Advent, Advent, 1 Monat weihnachtliche Laufzeit geschenkt.

Nicht bis zur Bescherung warten, Aktion nur gültig bis zum 18.12.2016!

Textversion des Videos

Transkript Partielle Integration

Hallo, in diesem Video geht es um die Regel der Partiellen Integration und wir berechnen dann noch das Integral von ∫lnx. Wir wissen ja zum Beispiel schon, dass wenn wir ein Produkt ableiten, wir nicht einfach die Faktoren ableiten können, sondern es hierfür eine Produktregel gibt. Und beim Integrieren ist das genau so. Wenn ich das Integral aus einem Produkt zweier Funktionen berechnen möchte, kann ich nicht einfach die einzelnen Integrale berechnen, sondern es gibt hierfür eine extra Regel und das ist die Partielle Integration. Also das hier: Produkt der einzelnen Integrale, dürft ihr auf keinen Fall machen! Okay, ich zeige euch erst mal die Regel. Das ist also ∫u'(x)×v(x)dx=[u(x)×v(x)]-∫u(x)×v'(x)dx. Der Term in der eckigen Klammer ist dann schon der erste Teil der Stammfunktion. Den zweiten Teil bekommt man dann über das Integral ganz hinten. Da heißt, wenn man jetzt ein bestimmtes Integral hat, mit Grenzen a und b, dann muss man die auch hinten an das Integral übertragen und an die eckigen Klammern. Aber eigentlich steht hier in der Regel nicht genau das, was wir wollten. Wir wollten ja ∫u(x)×v(x), aber hier steht ja jetzt ∫u'(x)×v(x). Das heißt wir können die Regel nur anwenden, wenn die eine Funktion, quasi etwas ist, was schon abgeleitet wurde. Und die andere Funktion ist glücklicherweise noch normal. Gucken wir uns das mal an dem Beispiel (in den Grenzen von 0 bis 1) ∫ex×xdx. Dann entspricht jetzt ex dem u'(x) und v(x) der Funktion x. Dann kommt in die eckige Klammer vorne u, wir haben jetzt aber nur u'. Aber da u'(x)=ex ist, dann ist u(x) natürlich auch ex, weil die Stammfunktion von ex, ex ist. Das heißt, der erste Term in der Klammer ist ex. Dann kommt v(x), das ist bei uns die Funktion x, das können wir also einfach übernehmen. Dann schreiben wir gleich die Grenzen von 0 bis 1 dran und rechnen -∫ von 0 bis 1. Und jetzt kommt wieder u, das hatten wir eben schon, das ist ex und dann v'. Das ist aber =1, weil v(x)=x ist, also kommt hier eine 1 hin. Und jetzt hat sich das Integral hinten so vereinfacht, dass wir davon die Stammfunktion elementar bestimmen können. Das ist der Sinn der Partiellen Integration. Die vordere Klammer übernehmen wir noch mal und da kommt dann die Stammfunktion von ex, das ist ex, in den Grenzen von 0 bis 1.   Jetzt wollen wir mal gucken, ob ex×x-ex wirklich die Stammfunktion von ex×x ist. Also leiten wir mal ab: Wir haben da zuerst ein Produkt, also u'×v+u×v'-ex. Und tatsächlich hebt sich hinten das ex gegenseitig auf und wir haben ex×x.   Jetzt möchte ich mal zeigen, warum die Regel überhaupt richtig ist:Das Integral hier rechts bringen wir erst mal auf die andere Seite. Dann haben wir also das Integral von links plus das Integral von rechts ist gleich die eckige Klammer. Dann können wir nach der Summenregel die beiden Integrale als ein Integral über die Summe schreiben. Und jetzt schauen wir mal genau, was da rechts steht: Da steht ein Produkt von zwei Funktionen, und wenn wir das ableiten, bekommen wir genau den Term u'×v+u×v', der links der Integrand ist. Also ist das Rechte, die Stammfunktion vom Linken. Und beim Rechnen kommt es später darauf an, dass man geschickt wählt, welche der Funktionen nun das u' sein soll und welche das v. Von der Funktion, die vorne nicht abgeleitet ist, haben wir später im Integral die Ableitung. Das heißt, die sollte beim Ableiten möglichst einfacher werden. Zum Beispiel Potenzen, da wird der Exponent beim Ableiten kleiner. Und von der andern Funktion, die wir als Ableitung interpretieren, brauchen wir zweimal die Stammfunktion. Das heißt, es sollte eine Funktion sein, von der wir die Stammfunktion schon kennen. Nehmen wir zum Beispiel mal ∫x²×exdx. Da wählen wir ex als schon abgeleitete Funktion und x² als normale Funktion. Denn x² wird beim Ableiten zu 2x und das ist dann ein schon wesentlich einfacherer Term. Und u ist wieder ex. Dann schreiben wir die Faktoren also so rum, dass wir die Formel oben anwenden können. Erst u' und dann v und dann kommt die eckige Klammer, da kommt u×v rein, also ex×x²-∫u×v'. Das u hatten wir eben schon und v' ist 2x. Im nächsten Schritt wird die eckige Klammer übernommen und hinten können wir aus dem Integral die 2 rausziehen (nach der Faktorregel). Ist gleich ex×x²-2×[ und jetzt müssten wir eigentlich nochmal partiell integrieren, aber die Stammfunktion haben wir eben schon bestimmt. Das war ex×x-ex. Dann können wir die Klammern auch noch auflösen. Da steht hier +2ex und da kann ich dann noch ex ausklammern. Als Faustregel könnt ihr euch merken: Wenn ihr ein Produkt habt, aus einer e-Funktion und einer Ganzrationalen Funktion, dann nehmt ihr immer das ex als u' und die Ganzrationale Funktion als v. Denn das ex verändert sich nie. Die Ganzrationale Funktion wird beim Ableiten aber einfacher. So, jetzt möchte ich euch noch einen kleinen Trick zeigen, nämlich wie man ∫lnx berechnet. Man vermutet nicht, dass das partiell geht, aber es geht, indem man sich vorne den Faktor 1 davor schreibt und ihn als Ableitung interpretiert und das lnx als v. Dann wäre also v'(x)=1/x und u(x) die Stammfunktion von 1, also x. Dann kommt in die eckige Klammer u×v, also x×lnx-∫u×v' also x×1/x und das ergibt natürlich 1 und ist dann ganz einfach zu integrieren. Insgesamt kommt also raus x×lnx-x.   Jetzt habt ihr also das Prinzip mal kennengelernt, es gibt auch noch schwierigere partielle Integrale, zum Beispiel mit Sinustermen, aber dazu gibt es dann ein anderes Video.

Informationen zum Video
4 Kommentare
  1. Bewerbungsfoto

    Hallo Jonas,
    ja, das ist dieselbe Regel.
    Grüße, Steve

    Von Steve Taube, vor fast 4 Jahren
  2. Default

    Hallo,
    im Buch von Lothar Papula "Mathematik für Ingenieure" steht dir Regel genau anders herum:
    Int u(x) * v'(x) = u(x) * v(x) - Int u'(x) * v(x)

    ist die selbe Regel oder?

    LG

    Von Jonas R., vor fast 4 Jahren
  3. Default

    vielen dank auch von mir

    Von Vimar, vor etwa 6 Jahren
  4. Ich

    Auch an dieser stelle ein großes Dankeschön. Ist toll, dass wenn ich bei den HA's nicht weiterkomme hier reinshcauen kann und dann Videos wie eben dieses vorfinde. Hat mir sehr geholfen. Hoffentlich ist das mit Video mit partieller Integration von sin und cos auch so gut :). Weiter so!!!
    Gruß vom Dude

    Von Der Dude, vor fast 7 Jahren