Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Ester

In der Chemie bilden Ester eine eigene Stoffklasse, die durch die Reaktion einer Säure mit einem Alkohol entstehen. Es gibt organische und anorganische Ester. Sie finden in verschiedenen Bereichen Anwendung und kommen auch in der Natur vor, z.B. in Obst und Gewürzen. Wie die hergestellt werden, und was für Eigenschaften haben sie, lernst du im folgenden Artikel!

Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Bewertung

Ø 3.3 / 32 Bewertungen
Die Autor*innen
Avatar
André Otto
Ester
lernst du in der Sekundarstufe 3. Klasse - 4. Klasse

Ester Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Ester kannst du es wiederholen und üben.
  • Formuliere die allgemeine Herstellungsreaktion eines Esters.

    Tipps

    Dei Veresterung ist eine Kondensationsreaktion.

    Dabei wird Wasser frei.

    Lösung

    Ausgangsstoffe für alle Ester sind ein Alkohol und eine Säure. Die OH-Gruppe des Alkohols reagiert also mit dem Proton der Säure und wird abgespalten. Es ergibt sich eine neue Bindung. Eine Ester-Gruppe ist entstanden: $\ce{-COO-}$. Ester haben vielfältige Erscheinungsformen. Es gibt flüssige, leichtflüchtige und auch wachsartige Ester. Sie kommen in Früchten, Fetten und vielen anderen Stoffen unseres Alltags vor. Aus Polyester, also Stoffen mit vielen Ester-Gruppen, bestehen Flaschen und auch Kleidung.

  • Gib die Verwendungsmöglichkeiten von Estern an.

    Tipps

    Ester werden mitunter als Lösemittel eingesetzt.

    Dynamit ist Glycerintrinitrat.

    Lösung

    Ester besitzen eine Ester-Gruppe zwischen zwei organischen Resten. Es gibt kurzkettige und auch langkettige Ester. Sie besitzen verschiedene Eigenschaften und eignen sich daher für verschiedene Zwecke. Kurzkettige Ester dienen als Lösemittel in Lacken und Klebstoffen, aber auch als Aromastoff für z. B. Limonade.

    Es gibt auch Ester aus anorganischen Säuren. Ein Beispiel dafür ist das Glycerintrinitrat. Im Volksmund wird es fälschlicherweise als Nitroglycerin bezeichnet. Dieser Stoff ist im von Alfred Nobel erfundenen Dynamit enthalten.

  • Benenne die Ester aus den gegebenen Ausgangsstoffen.

    Tipps

    Der Name ergibt sich aus der Säure, dem Rest des Alkohols und der Endung Ester.

    Eine andere Form der Benennung setzt sich zusammen aus dem Rest des Alkohols und dem Carboxylat-Ion der Säure.

    Lösung

    Der Name eines Esters setzt sich immer aus den Edukten zusammen. Du kannst also immer von den Edukten auf das Produkt schließen und umgekehrt. Im Bild siehst du den Ester Ethansäureethylester. Dieser wird auch als Ethylacetat bezeichnet. Er ist aus der Reaktion von Essigsäure und Ethanol entstanden. Es handelt sich um einen kleinen, leichtflüchtigen Ester.

    Reaktionsgleichung:
    $\ce{C2H5OH + CH3-COOH -> C2H5-COO-CH3 + H2O}$

  • Beschreibe Fruchtester und ihr Vorkommen.

    Tipps

    Die Verwendung leitet sich aus den Eigenschaften ab und folgt daher am Ende.

    Beginne mit dem Aufbau der Fruchtester.

    Lösung

    Fruchtester sind kurzkettige Ester. Da ihre Moleküle relativ klein und wenig polar sind, bestehen keine hohen Anziehungskräfte innerhalb der Substanz. Es können also viele Moleküle aus der Oberfläche in die Gasphase eintreten. Daher sind Fruchtester leicht flüchtig und man riecht sie sehr deutlich, da sich viele Moleküle in der Luft befinden. Ethyl- und Butylacetat sind besonders wichtige Lösemittel in der Lackindustrie. Sie werden auch zum Säubern von Oberflächen eingesetzt. Butylacetat besitzt einen Geruch, der an Eisbonbons erinnert.

  • Beschrifte die Teile des gezeigten Fettes.

    Tipps

    Glycerin besitzt die Summenformel $\ce{C3H5(OH)3}$. Es ist also ein dreifacher Alkohol.

    Fettsäuren sind lange Kohlenwasserstoffketten mit einer Säuregruppe.

    Lösung

    Fette entstehen durch die Reaktion des Dreifachalkohols Glycerin mit drei Fettsäuren. Es bildet sich ein Dreifachester und Wasser wird abgespalten. Im Bild siehst du ein Beispiel für ein solches Molekül in Skelettschreibweise. Fette sind aufgrund der langen unpolaren Fettsäure-Reste nicht mit Wasser mischbar. Sie bilden einen Grundnährstoff und liefern dem Körper viel Energie. Die Fettsäuren, besonders die ungesättigten Fettsäuren, sind wichtig für den Aufbau körpereigener Stoffe.

  • Beschreibe die Seifenherstellung aus Fetten.

    Tipps

    Bei der Verseifung handelt es sich um eine Hydrolyse.

    Die saure Verseifung stellt die Rückreaktion der Esterherstellung dar. Die saure Verseifung ist daher umkehrbar.

    Lösung

    Durch die Spaltung der Esterbindung werden die Fettsäure-Reste frei. Diese tragen eine negative Ladung am Carboxylat-Ion $\left( \ce{-COO^-} \right)$. Das Kation der zur Spaltung eingesetzten Base lagert sich nun hier an. Der Fettsäure-Rest besitzt außerdem noch eine lange organische Kette. Diese ist unpolar, da sie nur aus Kohlenstoff- und Wasserstoffatomen besteht. Dieser Teil, auch als Schwanz bezeichnet, ist demnach hydrophob, also wasserabweisend, und lipophil (löslich in Fetten). Der Kopf dagegen trägt die negative Ladung und das Kation. Dieser Teil ist polar und damit hydrophil (wasserlöslich).

    Diese Tenside können also zum Teil in polaren und zum anderen Teil in unpolaren Lösemittel gelöst werden. Sie sind daher grenzflächenaktiv. Sie lagern sich an der Phasengrenze dieser Lösemittel an. Dadurch ermöglichen sie ein Ablösen von unpolarem Schmutz im Lösemittel Wasser (Waschvorgang).