- Chemie
- Modelle, Formeln und Konzepte
- Chemische Bindungen
- Bindungsarten im Vergleich
Bindungsarten im Vergleich
Kovalente Bindungen teilen Elektronen zwischen den Bindungspartnern und schaffen chemische Stabilität. Unpolare Bindungen (zum Beispiel im Sauerstoffmolekül) haben gleiche Elektronegativitätswerte, während polare Bindungen (zum Beispiel in Chlorwasserstoff) unterschiedliche Werte aufweisen. Erfahre mehr in diesem informativen Artikel! Interessiert? Das und vieles mehr findest du im folgenden Text.
- Was sind kovalente Bindungen?
- Beispiele für unpolare kovalente Bindungen
- Beispiel für eine polare kovalente Bindungen
- Wann ist eine Bindung nicht mehr kovalent?
- Beispiel für eine ionische Bindungen
- Zusammenfassung zu kovalenten und ionischen Bindungen
- Häufig gestellte Fragen zum Thema Kovalente und ionische Bindungen
die Noten verbessern
In wenigen Schritten dieses Video freischalten & von allen sofatutor-Inhalten profitieren:
in nur 12 Minuten? Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
-
5 Minuten verstehen
Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.
92%der Schüler*innen hilft sofatutor beim selbstständigen Lernen. -
5 Minuten üben
Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.
93%der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert. -
2 Minuten Fragen stellen
Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.
94%der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Das Kovalente Bindungen Quiz besiegt 60% der Teilnehmer! Kannst du es schaffen?
Quiz startenDu musst eingeloggt sein, um bewerten zu können.
Wow, Danke!
Gib uns doch auch deine Bewertung bei Google! Wir freuen uns!
Grundlagen zum Thema Bindungsarten im Vergleich
Was sind kovalente Bindungen?
Kovalente Bindungen (auch Atombindungen genannt) stellen eine Art der chemischen Bindung zwischen zwei oder mehreren Bindungspartnern dar. Bei der kovalenten Bindung teilen sich zwei Atome gleichermaßen ein gemeinsames Elektronenpaar. Dieses setzt sich aus den Valenzelektronen der beiden Bindungspartner zusammen. Man spricht in diesem Zusammenhang auch von Bindungselektronen bzw. einem bindenden Elektronenpaar. Demnach werden kovalente Bindungen auch als Elektronenpaarbindungen bezeichnet. Eine Bedingung für das Zustandekommen einer kovalenten Bindung ist, dass die Differenz der Elektronegativitätswerte $\Delta EN$ der beiden Bindungspartner kleiner als $1,7$ sein muss $\left(\Delta EN\lt 1,7 \right)$.
Durch das Teilen gemeinsamer Bindungselektronen in der kovalenten Bindung erlangen die Bindungspartnern im Idealfall eine Edelgaskonfiguration und sind dadurch chemisch stabiler als vor der Bindung.
Beispiele für unpolare kovalente Bindungen
Haben die Atome der Bindungspartner denselben Elektronegativitätswert oder unterscheiden sich diese nur geringfügig ($\Delta EN \lt 0,5$), spricht man von einer unpolaren kovalenten Bindung (Atombindung). Solche Bindungen liegen vor allem in Elementmolekülen vor, bei denen die Bindungspartner ja dem gleichen Element zugehörig sind:
Im Wasserstoffmolekül $\left( \ce{H2} \right)$ haben beide Wasserstoffatome dieselben Elektronegativitätswerte. Sie ziehen die Elektronen daher gleichermaßen zu sich heran und teilen sich das bindende Elektronenpaar zu gleichen Anteilen. Auch beim Sauerstoff $\left( \ce{O2} \right)$ findet man eine unpolare kovalente Bindung, da beide Sauerstoffatome die gleiche Elektronegativität haben. Der einzige Unterschied ist hier, dass es sich um eine Doppelbindung handelt. Eine kovalente Dreifachbindung ist im Stickstoffmolekül $\left( \ce{N2} \right)$ zu finden.
Beispiel für eine polare kovalente Bindungen
Liegt der Betrag der Elektronegativitätsdifferenz im Bereich $0,5 \lt \Delta EN \lt 1,7$, spricht man von einer polaren Atombindung. Hier wird das gemeinsame Elektronenpaar stärker von dem Bindungspartner mit der größeren Elektronegativität angezogen. Es entstehen sogenannte Partialladungen, wie im Fall von Chlorwasserstoffs $\left( \ce{HCl} \right):$
Die Differenz $\Delta EN$ beträgt in diesem Fall:
$\Delta EN=EN(\ce{Cl})-EN(\ce{H})=3,16-2,2=0,96$
Somit handelt es sich um eine polare kovalente Bindung (Atombindung), bei der die Elektronen näher an das Chloratom herangezogen werden und sich daher am Chloratom eine negative Partialladung $\left( {\delta}^{-} \right)$ ausbildet, während am Wasserstoffatom eine positive Partialladung $\left( {\delta}^{+} \right)$ entsteht.
Wann ist eine Bindung nicht mehr kovalent?
Ab einer Elektronegativitätsdifferenz von $\Delta EN \gt 1,7$ liegt eine ionische Bindung vor. Hier ist die Differenz der Elektronegativitätswerte der Bindungspartner so groß, dass der elektronegativere Partner die Bindungselektronen vollständig aufnimmt und damit seinem Partner entzieht. Der elektronegativere Partner erhält dadurch eine negative Ladung und wird zum Anion. Der elektropositivere Partner bekommt durch den Verlust des Elektrons eine positive Ladung und wird zum Kation. Die Anziehung in einer ionischen Bindung beruht auf der ionischen Wechselwirkung zwischen Anion und Kation, also der elektrostatischen Anziehung zwischen zwei gegensätzlichen elektrischen Ladungen. Die dabei wirkende Kraft ist die Coulombkraft.
Beispiel für eine ionische Bindungen
Die Verbindung Natriumchlorid $\left( \ce{NaCl} \right)$ ist ein typisches Beispiel für eine Ionenverbindung. Es handelt sich um nichts anderes als Kochsalz.
Die Differenz der Elektronegativitäten ergibt sich wie folgt:
$\Delta EN=EN(Cl)-EN(Na)=3,16-0,93=2,23 \gt 1,7$
Hier liegt also eine Ionenbindung vor. Das bedeutet, die Anziehung dieser beiden Teilchen erfolgt durch die elektrostatische Anziehung zwischen Anion $\left( \ce{Cl-} \right)$ und Kation $\left( \ce{Na+} \right)$.
Zusammenfassung zu kovalenten und ionischen Bindungen
In der folgenden Tabelle sind die Schwellenwerte der Elektronegativitätsdifferenz $\Delta EN$ zusammengefasst, die eine Unterscheidung zwischen unpolarer und polarer kovalenter Bindung (Atombindung), sowie zwischen kovalenter Bindung und Ionenbindung ermöglichen.
$\begin{array}{l|l|l} \Delta EN&\text{Bindungsart}&\text{Bindungstyp} \\ \hline \lt 0,5&\text{kovalent}&\text{unpolar} \\ \hline 0,5-1,7&\text{kovalent}&\text{polar} \\ \hline \gt 1,7&\text{ionisch}&\text{ionisch} \end{array}$
Metalle und ihre Legierungen weisen hingegen weder kovalente noch ionische Bindungen auf. Sie bilden Metallbindungen aus.
Häufig gestellte Fragen zum Thema Kovalente und ionische Bindungen
Bindungen zwischen Partnern, deren Elektronegativitätswerte sich um weniger als $1,7$ unterscheiden, also eine Elektronegativitätsdifferenz $\Delta EN \lt 1,7$ aufweisen, bilden kovalente Bindungen aus. Das sind vor allem die Nichtmetalle untereinander, z. B. die Elementmoleküle $\ce{H2}$, $\ce{O2}$ oder $\ce{N2}$ sowie Verbindungen wie Chlorwasserstoff $\left( \ce{HCl} \right)$, Wasser $\left( \ce{H2O} \right)$ oder Kohlenstoffdioxid $\left( \ce{CO2} \right)$.
Ab einer Elektronegativitätsdifferenz $\Delta EN \gt 1,7$ zwischen zwei Bindungspartnern liegt eine Ionenbindung vor. Das ist vor allem der Fall, wenn ein Metall und ein Nichtmetall eine Bindung eingehen. Es gibt aber auch Verbindungen zwischen Metallen und Nichtmetallen, die keine Ionenverbindungen sind, zum Beispiel einige Metalloxide. Hier ist der Übergang zwischen kovalent gebundenen Molekülen und Ionenverbindungen mehr oder weniger fließend. Zwischen Nichtmetallen untereinander treten hingegen ausschließlich kovalente Bindungen auf.
Ionenbindungen und Metallbindungen sind keine kovalenten Bindungen. Auch zwischenmolekulare Wechselwirkungen, beispielsweise Wasserstoffbrückenbindungen, zählen nicht als kovalente Bindungen.
Ja, Wasser enthält kovalente Bindungen, genauer gesagt sind die Bindungen im Wassermolekül $\left( \ce{H2O} \right)$ kovalent.
Ja, auch im Kohlenstoffdioxid-Molekül $\left( \ce{CO2} \right)$ liegen kovalente Bindungen vor, in diesem Fall zwei Doppelbindungen.
Nein, ionische Bindungen sind in der Regel stärker als kovalente Bindungen.
Eine polare kovalente Bindung ist eine Atombindung, bei der die Bindungselektronen von einem Bindungspartner deutlich stärker angezogen werden als vom anderen. Die Elektronegativitätsdifferenz liegt bei polaren Atombindungen im Bereich $0,5 \lt \Delta EN \lt 1,7$. Ein gutes Beispiel hierfür stellt Chlorwasserstoff dar mit einem $\Delta EN$-Wert von $0,96$. Hier entsteht eine negative Formalladung am elektronegativeren Partner Chlor und eine positive Formalladung am elektropositiveren Partner Wasserstoff.
Nein, nur kovalente Bindungen mit einer Elektronegativitätsdifferenz $\Delta EN \lt 0,5$ sind unpolar. Das ist vor allem bei Elementmolekülen der Fall, z. B. $\ce{H2}$, $\ce{O2}$ oder $\ce{N2}$, da hier der Wert der Elektronegativität der beiden Bindungspartner identisch ist und damit $\Delta EN =0$ gilt. Aber auch kovalente Bindungen zwischen Wasserstoff $\left( \ce{H} \right)$ und Kohlenstoff $\left( \ce{C} \right)$ sind unpolar, z. B. im Methan-Molekül $\left( \ce{CH4} \right)$, da hier $\Delta EN=EN(\ce{C})-EN(\ce{H})=2,55-2,2=0,35$ beträgt und damit $\lt 0,5$ ist.
1.215.161 Schülerinnen und Schüler haben bereits unsere Übungen absolviert. Direktes Feedback, klare Fortschritte: Finde jetzt heraus, wo du stehst!
Jetzt registrieren und vollen Zugriff auf alle Funktionen erhalten!
30 Tage kostenlos testenTranskript Bindungsarten im Vergleich
Ein FLIEẞENDER Übergang vom Kind zum Erwachsenen, oder doch eher klar ABGEGRENZT, wie bei diesem Schmetterling? Wie sich das in der Chemie zwischen den Bindungsarten verhält, siehst du, wenn wir sie hier einmal im Vergleich betrachten. Du solltest bereits die Atombindung kennen (auch kovalente Bindung genannt), sowie die Ionenbindung, und die Metallbindung. Das sind die drei Bindungsarten, nach denen Atome chemische Bindungen miteinander eingehen. Aber sind die drei wirklich so klar voneinander abzugrenzen? Sehen wir uns die KOVALENTE Bindung mal genauer an. Hier gibt es nochmal eine Unterteilung:Bindungen zwischen zwei Atomen des GLEICHEN Elements, wie hier im Wasserstoffmolekül, nennen wir UNPOLAR. Atombindungen zwischen zwei UNTERSCHIEDLICHEN Bindungspartnern, sind hingegen POLAR. Denn weil zwei GLEICHE Atome die gleiche Elektronegativität
Bindungsarten im Vergleich Übung
-
Ordne die Bindungsarten zu.
TippsAtome, die sich ein oder mehrere Elektronen teilen, gehen eine Atombindung ein.
LösungEs gibt drei Bindungsarten, nach denen Atome chemische Bindungen miteinander eingehen: die Atombindung (kovalente Bindung), die Ionenbindung und die Metallbindung.
Während das Zustandekommen der Atombindung und der Ionenbindung etwas mit der Elektronegativität eines Atoms zu tun hat, tanzt die Metallbindung etwas aus der Reihe. Eine Atombindung kann entweder polar oder unpolar sein. Auch das ist abhängig von der Elektronegativitätsdifferenz.
Hier eine kurze Erklärung zu jeder Bindungsart:
- Ionenbindung: Ein Atom gibt ein oder mehrere Außenelektronen an ein anderes Atom ab.
- Atombindung: Ein oder mehrere Außenelektronen werden geteilt.
- Metallbindung: Alle Außenelektronen werden unter allen Atomen eines Stoffes geteilt.
-
Benenne die Moleküle.
Tipps„Hydrogenium“ ist der lateinische Name für Wasserstoff.
LösungBei der Ionenbindung gibt ein Atom ein oder mehrere Außenelektronen ab, die ein anderes Atom aufnimmt. Es findet also eine Elektronenübertragung statt. Somit ist ein Bindungspartner positiv geladen, während der andere eine negative Ladung vorweist. Ein bekannter Vertreter der Ionenbindung ist Natriumchlorid.
Die Atombindung oder kovalente Bindung können wir noch einmal unterteilen in polar und unpolar:
- Bindungen zwischen zwei Atomen des gleichen Elements sind immer unpolar. Das ist bei den Molekülen Chlor und Wasserstoff der Fall.
- Wenn die Bindungspartner eine hohe Elektronegativitätsdifferenz haben, aber keine Ionenbindung vorliegt, dann sprechen wir von einer polaren Atombindung. Ein typisches Beispiel dafür ist Chlorwasserstoff.
-
Vergleiche die Bindungsarten.
TippsIn Ionenverbindungen geben Atome ein oder mehrere Außenelektronen an andere Atome ab, so wie hier im Bild das Natriumatom.
Eine Ionenbindung ist deutlich stärker als eine unpolare Atombindung.
LösungEs gibt drei Bindungsarten, nach denen Atome chemische Bindungen miteinander eingehen: die Atombindung (kovalente Bindung), die Ionenbindung und die Metallbindung.
Um zu wissen, welche Bindung ausgebildet wird, sollten wir die Merkmale der Bindungsarten kennen:
- Es liegt eine Metallbindung vor, wenn alle Außenelektronen unter allen Atomen eines Stoffes geteilt werden.
- Es handelt sich um eine Atombindung, wenn die Außenelektronen zwischen den Atomen eines Moleküls geteilt werden.
- Es bildet sich eine Ionenbindung aus, wenn eine Elektronenübertragung im Molekül stattfindet.
- Je größer die Elektronegativitätsdifferenz zweier Bindungspartner ist, desto größer ist die Bindungsenergie.
-
Charakterisiere die Moleküle.
TippsWenn die Elektronegativitätsdifferenz größer als $\ce{0,\!5}$ ist, dann handelt es sich in der Regel um eine polare Atombindung.
Bei der Ionenbindung gibt ein Atom ein oder mehrere Elektronen an ein anderes Atom ab.
LösungWasserstoffmolekül $(\ce{H_2})$
Da es sich bei der Verbindung um das gleiche Element handelt, gibt es keine Elektronegativitätsdifferenz $(\ce{\Delta EN = 0}$).
Daher liegt auch eine unpolare Atombindung vor.
Die Außenelektronen werden gleichmäßig aufgeteilt, sodass beide Wasserstoffatome die Edelgaskonfiguration erreichen.Chlorwasserstoff $(\ce{HCl})$
Die berechnete Elektronegativitätsdifferenz von Chlor und Wasserstoff liegt bei $0,\!96$ $(\ce{\Delta EN= 0,\!96})$.
Die Differenz der Elektronegativität der beiden Bindungspartner liegt über $0,\!5$. Deshalb handelt es sich um eine polare Atombindung.
Da das Chloratom eine höhere Elektronegativität vorweist, zieht es die Außenelektronen stärker an sich. Die Ladungen verschieben sich, es gibt zwei Pole.Natriumchlorid $(\ce{NaCl})$
Das Molekül weist eine Elektronegativitätsdifferenz von $2,\!23$ $(\ce{\Delta EN= 2,\!23})$ auf.
Es handelt sich eindeutig um eine Ionenbindung, da der Schwellenwert von $1,\!7$ deutlich überschritten wird. Bei Ionenbindungen werden Elektronen übertragen. Das heißt, ein Atom gibt ein oder mehrere Außenelektronen an ein anderes Atom ab. -
Arbeite die Merkmale des abgebildeten Moleküls heraus.
TippsEs gibt drei richtige Antworten.
LösungAus der Abbildung können wir folgende Merkmale ableiten:
$\to$ Zwei Wasserstoffatome verbinden sich zu einem Molekül.
Dem Wasserstoffatom fehlt ein Außenelektron, um die Edelgaskonfiguration von Helium zu erreichen. Daher verbinden sich zwei Atome miteinander.
$\to$ Die Elektronegativitätsdifferenz ist gleich $\boldsymbol{\ce{0}}$.
Da es sich um das gleiche Element handelt, haben die beiden Bindungspartner die gleiche Elektronegativität.
$\to$ Es liegt eine unpolare Atombindung vor.
Der Schwellenwert von polarer zu unpolarer Atombindung liegt bei $\boldsymbol{\ce{0,\!5}}$. -
Entscheide, um welche Bindungsart es sich handelt.
TippsJe größer die Elektronegativitätsdifferenz zweier Bindungspartner, desto stärker die Bindung.
LösungEs gibt drei Bindungsarten, nach denen Atome chemische Bindungen miteinander eingehen: die Atombindung (kovalente Bindung), die Ionenbindung und die Metallbindung.
Jede Bindungsart hat ihre besonderen Merkmale:
1. Diese Bindung kann entweder polar oder unpolar sein. $\to$ Atombindung
2. Salze entstehen durch diese Bindung. $\to$ Ionenbindung
3. Man nennt diese Bindung auch kovalente Bindung. $\to$ Atombindung
4. Diese Bindung ist die stärkste, die zwischen Teilchen herrschen kann. $\to$ Ionenbindung
5. Bei Legierungen beispielsweise liegt diese Bindung vor. $\to$ Metallbindung
6. Wenn die EN-Differenz höher als $1,\!7$ ist, dann bildet sich in der Regel diese Bindung aus. $\to$ Ionenbindung
8'794
sofaheld-Level
6'601
vorgefertigte
Vokabeln
7'380
Lernvideos
36'269
Übungen
32'819
Arbeitsblätter
24h
Hilfe von Lehrkräften
Inhalte für alle Fächer und Schulstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.
Testphase jederzeit online beenden
Beliebteste Themen in Chemie
- Periodensystem
- Ammoniak Verwendung
- Entropie
- Salzsäure Steckbrief
- Kupfer
- Stickstoff
- Glucose Und Fructose
- Salpetersäure
- Redoxreaktion
- Schwefelsäure
- Natronlauge
- Graphit
- Legierungen
- Dipol
- Molare Masse, Stoffmenge
- Sauerstoff
- Elektrolyse
- Bor
- Alkane
- Verbrennung Alkane
- Chlor
- Elektronegativität
- Tenside
- Toluol, Toluol Herstellung
- Wasserstoffbrückenbindung
- Fraktionierte Destillation Von Erdöl
- Carbonsäure
- Ester
- Harnstoff, Kohlensäure
- Reaktionsgleichung Aufstellen
- Redoxreaktion Übungen
- Cellulose Und Stärke Chemie
- Süßwasser Und Salzwasser
- Katalysator
- Ether
- Primärer Alkohol, Sekundärer Alkohol, Tertiärer Alkohol
- Van-der-Waals-Kräfte
- Oktettregel
- Kohlenstoffdioxid, Kohlenstoffmonoxid, Oxide
- Alfred Nobel Und Die Dynamit Entdeckung
- Wassermolekül
- Ionenbindung
- Phosphor
- Saccharose Und Maltose
- Aldehyde
- Kohlenwasserstoff
- Kovalente Bindungen
- Wasserhärte
- Peptidbindung
- Fermentation