30 Tagekostenlos testen

Überzeugen Sie sich von der Qualität unserer Inhalte.

Kovalente und ionische Bindungen

Du möchtest schneller & einfacher lernen?

Dann nutze doch Erklärvideos & übe mit Lernspielen für die Schule.

sofatutor kostenlos testen
Bewertung

Ø 4.4 / 53 Bewertungen

Die Autor*innen
Avatar
Chemie-Team
Kovalente und ionische Bindungen
lernst du in der Sekundarstufe 1. Klasse - 2. Klasse

Grundlagen zum Thema Kovalente und ionische Bindungen

Inhalt

Was sind kovalente Bindungen?

Bei der kovalenten Bindung teilen sich zwei Bindungspartner gleichermaßen ein gemeinsames Elektronenpaar. Dieses besteht aus den Valenzelektronen von zwei Bindungspartnern. Als Bedingung muss die Differenz der Elektronegativitätswerte der beiden Bindungspartner kleiner sein als $1,7$ $(\Delta E\lt 1,7)$.

Im Idealfall besitzen nun die Bindungspartner eine Edelgaskonfiguration und sind dadurch chemisch stabiler als vor der Bindung.

Beispiele für unpolare kovalente Bindungen

Haben Atome denselben Elektronegativitätswert oder unterscheiden sie sich nur geringfügig ($\Delta E \lt 0,5$), spricht man von einer unpolaren kovalenten Bindung.

unpolare Verbindungen

Im Wasserstoffmolekül haben beide Wasserstoffatome dieselben Elektronegativitätswerte. Sie ziehen die Elektronen daher gleichermaßen zu sich heran und teilen sich das Elektronenpaar zu gleichen Anteilen. Auch beim Sauerstoff findet man eine unpolare kovalente Bindung, da die Sauerstoffatome die gleiche Elektronegativität haben. Der einzige Unterschied ist hier, dass es sich um eine Doppelbindung handelt. Eine kovalente Dreifachbindung ist im Stickstoffmolekül zu finden.

Beispiel für polare kovalente Bindungen

Beträgt die Elekronegativitätsdifferenz $0,5 \lt \Delta E \lt 1,7$ spricht man von einer polaren Bindung. Hier wird das gemeinsame Elektronenpaar stärker von dem Bindungspartner mit dem höheren $E$-Wert angezogen. Es entsteht eine sogenannte Partialladung.

polare Verbindung HCl

Die Differenz beträgt in diesem Fall:
$\Delta E=E(Cl)-E(H)=3,0-2,1=0,9$
Somit handelt es sich um eine polare kovalente Bindung, bei der die Elektronen näher am Chloratom sind und sich daher am Chloratom eine negative Partialladung ausbildet.

Wann ist eine Bindung nicht mehr kovalent?

Ab $\Delta E \gt 1,7$ spricht man von einer ionischen Bindung. Hier ist die Differenz der Elektronegativitätswerte so hoch, dass der elektronegativere Partner der Bindung seinem Partner das Elektron entzieht und somit eine negative Ladung bekommt. Der elektropositivere Partner erhält durch den Verlust des Elektrons eine positive Ladung. Die Anziehung in einer ionischen Bindung beruht also auf einer sogenannten ionischen Wechselwirkung, also auf der Anziehung zwischen Anion und Kation. Die wirkende Kraft ist die Coulombkraft.

Beispiel für ionische Bindungen

ionische Verbindung NaC

Die Differenz der Elektronegativitäten wird wie folgt bestimmt:
$\Delta E=E(Cl)-E(Na)=3,0-0,9=2,1 \gt 1,7$

Hier liegt also eine Ionenbindung vor. Das bedeutet, die Anziehung dieser beiden Teilchen erfolgt durch die Anziehung von Anion und Kation.

$\begin{array}{l|l|l} \text{Bindungsart}&\text{Bindungstyp}&\Delta E \\ \hline \text{kovalent}&\text{unpolar}&\lt 0,5 \\ \hline \text{kovalent}&\text{polar}&0,5-1,7 \\ \hline \text{ionisch}&\text{ionisch}&\gt 1,7 \end{array}$

Ausnahmen

Metalle und Legierungen besitzen weder kovalente noch ionische Bindungen, sie bilden Metallbindungen aus.

Transkript Kovalente und ionische Bindungen

Chemische Bindungsarten - kovalente und ionische Bindungen

Hallo! Heute wollen wir uns mit chemischen Bindungen beschäftigen, also mit der Frage wie Atome untereinander gebunden sind und so zu Molekülen werden. Du weißt ja bereits, dass Moleküle aus mindestens zwei Atomen bestehen. Hier merkst du also schon, dass es in jedem Molekül Bindungen gibt. Nun sind natürlich nicht alle Bindungstypen gleich und daher werden wir uns heute mit den verschiedenen Arten von Bindungen beschäftigen.

An einer chemischen Bindung zwischen zwei Atomen sind immer die Außenelektronen dieser Atome beteiligt. Dabei sind die Elektronen der Bindung nicht immer gleichermaßen auf beide Atome aufgeteilt. Damit du verstehen kannst, wieso das so ist, zeige ich dir als erstes die Elektronegativität von Atomen.

Die Elektronegativität ist nämlich das Maß für das Bestreben eines Atoms, Bindungselektronen an sich zu ziehen. Die Elektronegativität kannst du dir wie die Kraft beim Seilziehen vorstellen, wobei auf dem Seil die Elektronen sitzen. Elemente mit hohen Elektronegativitäten können die Elektronen besonders stark an sich ziehen.

Wenn du dir das Periodensystem ansiehst, findest du einen Anstieg der Elektronegativität von links nach rechts und von unten nach oben. Das bedeutet, dass Fluor das elektronegativste Element ist, gefolgt von Sauerstoff. Nun können wir auf die zwei wichtigsten Bindungstypen eingehen. Die kovalente Bindung und die Ionenbindung.

Als erstes lernst du die kovalente Bindung kennen. Bei der kovalenten Bindung teilen sich zwei Bindungspartner gleichermaßen ein gemeinsames Elektronenpaar. Dies schauen wir uns am Beispiel des Wasserstoffmoleküls einmal an. Hier siehst du eine kovalente Bindung bei der sich die beiden Wasserstoffatome das Elektronenpaar zu gleichen Anteile teilen. Dies ist möglich, da die Elektronegativitätswerte der beiden Atome gleich sind.

Auch beim Sauerstoff finden wir eine kovalente Bindung mit gleichen Bindungsanteilen, mit dem Unterschied dass hier eine Doppelbindung ausgebildet wird. Ein weiteres Beispiel ist das Stickstoffmolekül. Hier wird eine Dreifachbindung ausgebildet, aber auch in diesem Beispiel handelt es sich um eine kovalente Bindung in der sich die beteiligten Bindungspartner die Elektronenpaare zu gleichen Anteilen teilen. Dies ist immer der Fall wenn beide Bindungspartner gleiche Elektronegativitätswerte besitzen.

Merke dir: Bei allen Molekülen, die nur aus einer Atomsorte bestehen, ist die Elektronegativität der Bindungspartner gleich. Es handelt sich also um unpolare Atombindungen. Dies ist auch der Fall, wenn die Differenz der Elektronegativitätswerte beider Partner innerhalb des Moleküls nur sehr gering ist. Das heißt, selbst bei einer Differenz von 0,5 handelt es sich immernoch um eine unpolar kovalente Bindung. Was passiert nun aber, wenn die Elektronegativitätswerte der Bindungspartner nicht gleich sind?

Wie du vorhin ja schon gesehen hast, ist die Elektronegativität ein Maß für das Bestreben eines Elements Elektronen an sich zu ziehen. Gibt es also in einem Molekül zwei Bindungspartner mit unterschiedlichen Elektronegativitätswerten, liegt der Schwerpunkt der Elektronenverteilung beim Partner mit der höheren Elektronegativität. Das bedeutet, dass dieser Bindungspartner etwas mehr vom Bindungselektronenpaar beansprucht. Dieser bekommt nun eine negative Teilladung, man spricht auch von Partialladung, und das Molekül wird polar. Wir werden dies nun am Beispiel von Chlorwasserstoff erläutern.

Hier siehst du, dass die Differenz der beiden Elektronegativitätswerte 0,9 beträgt. Somit haben wir also keine unpolare kovalente Bindung mehr sondern eine polare kovalente Bindung. Eine kovalente Bindung kann also polar oder unpolar sein.

Merke: Wenn die Differenz der Elektronegativitätswerte von 0 bis 1,7 reicht, spricht man von einer kovalenten Bindung. Die Polarität des Moleküls nimmt aber mit steigender Differenz der Werte zu. Ab einem Wert von 0,5 ist die Bindung polar. Ab einer Differenz von 1,7 spricht man dann von einer Ionenbindung.

Nun werden wir uns mit der zweiten Bindungsart, der Ionenbindung beschäftigen. Hier ist die Differenz der Elektronegativitätswerte so hoch, dass der elektronegativere Partner der Bindung seinem Partner das Elektron entzieht und somit eine negative Ladung bekommt. Der elektropositivere Partner erhält durch den Verlust des Elektrons eine positive Ladung.

Die Anziehung in einer ionischen Bindung beruht also auf einer so genannten elektrostatische Wechselwirkung, also auf der Anziehung zwischen Anion und Kation. Damit du das besser verstehen kannst schauen wir uns die Ionenbindung am Beispiel von Natriumchlorid an.

Im Natriumchlorid hat das Natrium einen Elektronegativitätswert von 0,9 und Chlor einen Wert von 3,0. Wenn wir nun die Differenz ermitteln kommen wir auf einen Wert von 2,1. Da diese Differenz höher ist als 1,7 besteht eine Ionenbindung. Das bedeutet die Anziehung dieser beiden Teilchen erfolgt durch die Anziehung von Anion und Kation.

Du hast heute gelernt, was Elektronegativität bedeutet und welche Auswirkungen diese auf die Bindungen innerhalb eines Moleküls hat. Bei einer kovalenten Bindung teilen sich die Atome der Bindung zum gleichen Anteil die Bindungselektronen. Sollte die Differenz der Elektronegativitäten höher als 0,5 sein, so entstehen durch das leichte Verschieben der Bindungselektronen bereits Partialladungen, wie beim Chlorwasserstoff. Ab einer Differenz von 1,7 kommt es zu einer ionischen Bindung. Das Elektron wird durch die so große Differenz der Elektronegativitäten komplett an das elektronegativere Atom der Bindung übergeben. Die Bindung der beiden Atome ist nur durch die Ladungen der Atome möglich.

Tschüss und bis zum nächsten mal!

14 Kommentare

14 Kommentare
  1. *Gut

    Von Sebastian, vor 14 Tagen
  2. Guz

    Von Sebastian, vor 14 Tagen
  3. 👍

    Von du dumme Kuh, vor 22 Tagen
  4. Kann man das aber auch ohne Angabe der EN-Werte bestimmen? Weil ich weiß, dass die EN innerhalb einer Periode zunimmt und innerhalb der Gruppe abnimmt, aber aus diesem Wissen kann ich mir nicht die EN-diff. berechnen. Also wie bestimme ich ob die Bindung kovalent oder ionisch ist ohne die EN-Werte?

    Von Monks Annie, vor 8 Monaten
  5. Super erklärt und gutes Video. Eine Frage bleibt... Ich lese oft in anderen Erklärungen delta-EN >1,8 hier aber delta-EN >1,7 was ist nun korrekt?

    Von D Hasdorf, vor mehr als 3 Jahren
Mehr Kommentare

Kovalente und ionische Bindungen Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Kovalente und ionische Bindungen kannst du es wiederholen und üben.
  • Definiere den Begriff Elektronegativität.

    Tipps

    Eine chemische Bindung entsteht nur zwischen bestimmten Teilchen von Atomen.

    Schaue dir in einem Periodensystem einmal die Elektronegativitäten an.

    Lösung

    Eine chemische Bindung wird zwischen zwei Atomen über die Außenelektronen eingegangen. Elektronegativität ist das Maß für das Bestreben eines Atoms, Bindungselektronen an sich zu ziehen. Das elektronegativere Atom kann die Bindungselektronen also stärker an sich ziehen als das elektropositivere Atom.

    Wenn du dir das Periodensystem einmal anschaust, wirst du bemerken, dass die Elektronegativität von links nach rechts und von unten nach oben zunimmt.

    Übrigens, die Elektronegativität wurde 1932 von Linus Pauling eingeführt, der die Elektronegativitätswerte auf einer Skala anordnete.

  • Gib an, welche Elektronegativitätsdifferenzen die folgenden Moleküle besitzen.

    Tipps

    Elektronegativitäten:

    $H = 2,1$

    $Cl = 3,0$

    $Na = 0,9$

    $O = 3,5$

    $C = 2,5$

    Lösung

    Die Elektronegativität ist das Maß für das Bestreben eines Atoms, Bindungselektronen an sich zu ziehen. Aus der Differenz der Elektronegativität kann man die Art der chemischen Bindung ablesen. So ist eine Differenz von unter 0,5 bezeichnend für eine unpolare kovalente Bindung, darüber bis 1,7 charakterisierend für eine polare kovalente Bindung und über 1,7 zeigt sie eine Ionenbindung an. Deshalb ist es so wichtig, sich mit Elektronegativitäten und -differenzen auszukennen.

    Die Elektronegativitätswerte findest du zum Beispiel im Periodensystem unter dem jeweiligen Element.

    Bilden zwei gleiche Atome ein Molekül, wie $H_2$, so ist die Differenz 0, da

    2,1 - 2,1 = 0

    Anders ist es, wenn zwei unterschiedliche Atome ein Molekül bilden. So ist die Differenz von $NaCl$ 2,1 und liegt damit über 1,7. Daher spricht man hier zum Beispiel von einer Ionenbindung.

    Bei Chlorwasserstoff beträgt die Differenz: $HCl: 3,0 - 2,1 = 0,9$

    Bei Kohlenstoffmonoxid beträgt die Differenz: $CO: 3,5 - 2,5 = 1,0$

  • Ermittle die Elektronegativitäten von folgenden Elementen.

    Tipps

    Erinnere dich daran, wie die Elektronegativität im Periodensystem der Elemente zunimmt.

    Überlege dir, in welchen Gruppen und Perioden die Elemente stehen.

    Lösung

    Die Elektronegativitätswerte nehmen im Periodensystem der Element von links nach rechts und von unten nach oben hin zu.

    Entsprechend ist Kalium, da es links unten im Periodensystem steht, das elektropositivste dieser Auswahl und steht an erster Stelle. Danach kommt Aluminium, da es in der 3. Periode steht, während die weiteren Elemente in der 2. Periode stehen. Nun betrachtest du alle sich in der 2. Periode befindenden Elemente. Am weitesten links kommt Kohlenstoff, dann Sauerstoff und zuletzt Fluor. In dieser Reihenfolge sind die Elemente zu sortieren, wenn es um das elektronegativste Element geht. Fluor ist somit - und im gesamten Periodensystem - mit 4,0 das elektronegativste Element.

  • Bestimme die Elemente, mit denen Sauerstoff eine Ionenbindung eingehen kann.

    Tipps

    Die Elektronegativität nimmt im Periodensystem der Elemente von links nach rechts und von unten nach oben zu. Überlege, wo du die Elemente findest, die eine kleine Elektronegativität besitzen.

    Eine Elektronegativitätsdifferenz von mehr als 1,7 ist charakterisierend für eine Ionenbindung.

    Elektronegativitäten:

    Stickstoff N: 3,0

    Natrium Na: 1,0

    Schwefel S: 2,5

    Magnesium Mg: 1,2

    Calcium Ca: 1,0

    Wasserstoff H: 2,1

    Lösung

    Eine Ionenbindung ist unter anderem durch eine Differenz der Elektronegativitäten von mehr als 1,7 charakterisiert.

    Da Sauerstoff einen Elektronegativitätswert von 3,5 besitzt, muss das Partneratom, mit dem Sauerstoff eine Ionenbindung eingehen soll, einen Elektronegativitätswert von unter 1,8 besitzen, damit die Differenz von mindestens 1,7 stimmt.

    Dazu zählen in dieser Aufgabe Natrium, Magnesium und Calcium.

    Sicher ist dir aufgefallen, dass diese drei Elemente links im Periodensystem stehen. Die Elektronegativität nimmt nämlich im Periodensystem der Elemente von links nach rechts und von unten nach oben zu.

  • Erkläre, was chemische Bindungen sind.

    Tipps

    Elektronegativität ist das Maß für das Bestreben eines Atoms, Bindungselektronen an sich zu ziehen.

    Ein Sauerstoffmolekül entsteht durch eine chemische Bindung.

    Lösung

    Wie du weißt, bestehen Moleküle aus mindestens zwei Atomen. An einer Bindung zwischen zwei Atomen sind immer die Außenelektronen beteiligt, dabei sind die Elektronen der Bindung nicht unbedingt gleichermaßen auf die Atome aufgeteilt. Dies hängt von der Elektronegativität ab. Es ist das Maß für das Bestreben eines Atoms, Bindungselektronen an sich zu ziehen. Es ist also ein bisschen so wie Seilziehen. Derjenige, der etwas stärker (elektronegativer) ist, kann das Seil (und damit die Elektronen) stärker an sich ziehen.

    Bei der chemischen Bindung gibt es zwei wichtige Bindungsarten: die kovalente Bindung und die Ionenbindung.

    Ist die Differenz zwischen den Bindungspartnern bis 0,5 groß, handelt es sich um eine unpolare kovalente Bindung, bei der die Elektronen gleichermaßen auf beide Bindungspartner aufgeteilt sind. Liegt die Differenz zwischen 0,5 und 1,7, so handelt es sich um eine polare kovalente Bindung. Dabei liegt der Schwerpunkt der Elektronen beim elektronegativeren Bindungspartner. Dieser bekommt eine negative Partialladung. Ist die Differenz aber noch größer als 1,7, handelt es sich um eine Ionenbindung. Dabei zieht der elektronegativere Bindungspartner die Bindungselektronen ganz an sich und bildet dadurch ein positiv geladenes Ion. Diese Anziehung beruht auf elektrostatischen Wechselwirkungen zwischen dem positiv geladenen Ion (Kation) und dem negativ geladenen Ion (Anion).

  • Gib an, welche Bindungsart die Verbindungen besitzen.

    Tipps

    Anhand der Differenz der Elektronegativitätswerte kannst du die unpolare, polare und die Ionenbindung unterscheiden. Du findest diese in einem Periodensystem.

    Elektronegativitäten:

    K = 0,8

    Cl = 1,3

    Mg = 1,2

    O = 3,5

    H = 2,1

    N = 3,0

    C = 2,5

    Lösung

    Betrachte die unterschiedlichen Elektronegativitätswerte und errechne die Differenzen. Ist die Differenz kleiner oder gleich 0,5, so handelt es sich um unpolare kovalente Bindungen. Liegt die Differenz zwischen 0,5 und 1,7, so handelt es sich dagegen um eine polare kovalente Bindung. Alles über einer Differenz von 1,7 ist eine Ionenbindung.

    • Für KCl gilt: $\Delta$ EN = 3,0 - 0,8 = 2,2
    • Für MgO gilt: $\Delta$ EN = 3,5 - 1,2 = 2,3
    Somit handelt es sich um eine Ionenbindung, da die Differenz über 1,7 ist.
    • Für Wasser gilt: $\Delta$ EN = 3,5 - 2,1 = 1,4
    • Für Ammoniak gilt: $\Delta$ EN = 3,0 - 2,1 = 0,9
    In beiden Molekülen sind die Bindungen also kovalente polare Bindungen, da die Differenz zwischen 0,5 und 1,7 liegt.
    • Methan hat unpolare kovalente Bindungen. Hier beträgt $\Delta$ EN = 0,4.
30 Tage kostenlos testen
Mit Spass Noten verbessern
und vollen Zugriff erhalten auf

2'230

sofaheld-Level

3'746

vorgefertigte
Vokabeln

10'218

Lernvideos

42'369

Übungen

37'404

Arbeitsblätter

24h

Hilfe von Lehrer*
innen

laufender Yeti

Inhalte für alle Fächer und Schulstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.

30 Tage kostenlos testen

Testphase jederzeit online beenden