30 Tage kostenlos testen:
Mehr Spass am Lernen.

Überzeugen Sie sich von der Qualität unserer Inhalte.

Löslichkeitsprodukt 06:13 min

Textversion des Videos

Transkript Löslichkeitsprodukt

Guten Tag und herzlich willkommen. Dieses Video heißt Löslichkeitsprodukt. Der Film gehört zur Reihe Salzlösungen. Zur Erzielung der notwendigen Vorkenntnisse solltet ihr euch über die Begriffe "Dissoziation", "Hydrationen von Ionen" und "Lösungsenthalpie" informiert haben. Entsprechende Videos dazu gibt es. Ziel des Videos ist es, euch ein erstes Verständnis über die Löslichkeit von Salzen, das Löslichkeitsprodukt und die praktische Anwendung desselben zu vermitteln.

Gliederung: 1. Dissoziationsgleichgewicht 2. Das Massenwirkungsgesetz 3. Löslichkeitsprodukt (LP) 4. Einheiten des Löslichkeitsproduktes 5. Beispiele   1. Dissoziationsgleichgewicht Natriumchlorid dissoziiert in wässriger Lösung in hydratisierte Natriumionen und hydratisierte Chloridionen. Ein Teil des Natriumchloridionengitters soll erhalten bleiben. Demzufolge wollen wir ein Gleichgewicht einer gesättigten Lösung haben. Hydratisierte Natriumionen und hydratisierte Chloridionen befinden sich in einer wässrigen Lösung. Die Lösung soll gesättigt sein, das heißt, wir haben einen Bodensatz an ungelöstem Natriumchlorid. Es besteht ein Gleichgewicht zwischen undissoziiertem und dissoziiertem Salz. 2. Das Massenwirkungsgesetz Auf chemische Gleichgewichte jeglicher Art kann man das Massenwirkungsgesetz anwenden. Die Gleichgewichtskonstante K ist dabei der Quotient aus Produktkonzentration und Eduktkonzentration. 3. Löslichkeitsprodukt NaCl in eckigen Klammern im Nenner bedeutet die Konzentration an ungelöstem Natriumchlorid. Feste Teilnehmer am chemischen Gleichgewicht kann man als konstant annehmen. Wir multiplizieren beide Seiten der Gleichung der ungelösten Konzentration von NaCl und erhalten K × Konzentration von ungelöstem NaCl = das Produkt der Konzentration ungelöster Ionen. Das Produkt zweier konstanter Werte, der Gleichgewichtskonstanten K und der Konzentration ungelösten Salzes NaCl bezeichnen wir abgekürzt als LP. LP ist ebenfalls eine Konstante. Sie ergibt sich als Produkt der Konzentrationen der gelösten Ionen. LP trägt den Namen Löslichkeitsprodukt. Das Löslichkeitsprodukt ist somit das Produkt der Konzentrationen der gelösten Ionen eines Salzes. Ich habe euch das Löslichkeitsprodukt an einem einfachen Beispiel ausgeführt. Die Sache hat aber einen deftigen Haken. Alle Überlegungen und somit die Gleichungen für das Löslichkeitsprodukt sind nur gut geeignet für schwache Elektrolyte. Das sind Salze, die nur gering löslich sind. Denn nur für diese gilt, dass man in guter Näherung, Konzentrationen der Ionen gleich entsprechender Aktivitäten setzen kann. 4. Einheiten Das Löslichkeitsprodukt besitzt verschiedene, nicht ineinander überführbare, Einheiten. Für Silberchlorid AgCl ergibt sich die Einheit des Löslichkeitsproduktes aus dem Produkt der Einheiten der Konzentration der beiden Ionen. Wir erhalten als Einheit mol²/l². Anmerkung: Die eckige Klammer um LP bedeutet nicht Konzentration, sondern ist das Zeichen für "Einheit einer Größe". Bei Calciumfluorid CaF2 haben wir die Konzentrationen dreier gelöster Ionen miteinander zu multiplizieren. Das Gleiche gilt auch für die Einheit. Wir erhalten somit mol³/l³. Noch etwas komplizierter wird es bei den Dissoziationen von Arsensulfid. Im Ganzen ergeben sich in Lösung 3 Ionen. Demzufolge erhält man für die Einheit des Löslichkeitsproduktes mol5/l5. Wir merken uns: Für das Löslichkeitsprodukt gibt es, je nach betrachtetem Salz, verschiedene Einheiten. 5. Beispiele Ich möchte euch zwei Anwendungsbeispiele vorführen. Das Erste relativ einfach, das Zweite ein wenig schwerer. 1. Wie groß ist die Konzentration von Silber-Ionen in einer gesättigten Silberchlorid-Lösung? Wir formulieren zunächst das Dissoziationsgleichgewicht, dann schreiben wir die Gleichung für das Löslichkeitsprodukt auf. Das Löslichkeitsprodukt sucht man in einem Nachschlagewerk heraus. Es beträgt für Silberchlorid   2×10^-10mol²/l². Aus der Stöchiometrie des Salzes ergibt sich, dass die Konzentration der Silber-Ionen gleich der Konzentration der Chlorid-Ionen ist. Somit erhält man [Ag+]² =2×10^-10mol²/l². Die Konzentration der Silberionen beträgt somit [Ag+]=1,4×10^-5mol/l. Das zweite Beispiel: Wie viel mg Calciumfluorid sind in 2l Wasser löslich? Wir formulieren zunächst das Dissoziationsgleichgewicht. Nun können wir das Löslichkeitsprodukt schreiben. Das Löslichkeitsprodukt entnehmen wir einem Nachschlagewerk. Für Calciumfluorid beträgt es 4×10^-11mol³/l³. Hier setzt die entscheidende Überlegung ein. 3 Mol, die aus 3 Ionen gebildet werden, ergeben sich aus genau einem Mol ungelösten Calciumfluorids. Achtung,die Konzentration von CaF2 [CaF2] hat nichts mit der Konzentration des Löslichkeitsprodukts zu tun. Das ist die Menge an Calciumfluorid, die in der Menge an Wasser löslich ist. Nach dieser Überlegung ist auch klar, warum wir jetzt aus dem Löslichkeitsprodukt die 3. Wurzel ziehen müssen. Wir erhalten jetzt für gelöstes Calciumfluorid von 3,4×10^-4mol/l. Nun benötigen wir die molare Masse von Calciumfluorid. Für Kalzium beträgt sie 40g/mol, für Fluor 19g/mol. Das macht in der Summe 78g/mol. Die Masse aus gelöstem Calciumfluorid ergibt sich als Produkt der molaren Masse, der Konzentration und des Volumens. Wir erhalten 0,053g und das sind 53mg.  Ich danke für die Aufmerksamkeit, alles Gute, auf Wiedersehen.

6 Kommentare
  1. Also bei mir ist die Lautstärke des Videos perfekt

    Von Klaus Juergen Neubauer, vor 11 Monaten
  2. Gutes video aber sehr leise! Ich hab es auf die oberste lautstärkenstufe aber trotzdem ist es immernoch von allen geräten zu leise, ich hoffe die zukünftigen videos können per mirkophon gedreht werden sodass es lauter wird.

    Von Saramaggi, vor mehr als 4 Jahren
  3. Ich verstehe nicht wo die ^-10 und ^-11 herkommen...

    Von Tom Matthes, vor mehr als 4 Jahren
  4. Super!! Ich schreibe morgen meine Chemieklausur über dieses Thema. Dank den Video habe ich es verstanden! :)

    Von Juephi, vor mehr als 6 Jahren
  5. .

    Von Maximilian123, vor mehr als 6 Jahren
  1. Sehr gut erklärt.

    Von Helmuth, vor mehr als 6 Jahren
Mehr Kommentare

Löslichkeitsprodukt Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Löslichkeitsprodukt kannst du es wiederholen und üben.

  • Definiere die Begriffe Löslichkeitsprodukt und gesättigte Lösung.

    Tipps

    Diese Lösung ist gesättigt.

    Erst wenn das Löslichkeitsprodukt überschritten wird, bildet sich ein Niederschlag ($\downarrow$).

    Lösung

    In einer gesättigten Lösung besteht ein dynamisches Gleichgewicht zwischen dem Bodensatz und den gelösten Ionen. Es gehen also genauso viele Ionen in Lösung wie als Feststoff ausfallen. Somit laufen Hin- und Rückreaktion gleich schnell ab. Dieses Gleichgewicht wird Löslichkeitsgleichgewicht genannt.

    Für chemische Gleichgewichte kann das Massenwirkungsgesetz (MWG) aufgestellt werden. Das MWG ist der Quotient der Konzentrationen der Produkte und der Konzentrationen der Edukte.

    • Gleichgewichtsreaktion: $A_mB_n \rightleftharpoons m~A^{a+}(aq) + n~B^{b-}(aq)$
    • MWG: $K_c$ = $({{c(A^{a+})}^m \cdot {c(B^{b-})}^n})~/~{c(A_mB_n)}$
    Das Löslichkeitsprodukt ist ein Sonderfall des MWG. Es beschreibt das dynamische Gleichgewicht zwischen Bodensatz (feste Ionensubstanz $A_mB_n$) und gesättigter Lösung (gelöste Ionen: $A^{a+}; B^{b-}$). Da die Menge des Bodensatzes als konstant angenommen wird, kann es mit der Gleichgewichtskonstanten $K_c$ verrechnet werden. Es ergibt sich das Löslichkeitsprodukt $K_L$ (auch $L_p$ genannt).
    • $K_L = {{c(A^{a+})}^m \cdot {c(B^{b-})}^n}$
    Entspricht das Produkt der Konzentrationen der gelösten (hydratisierten) Ionen dem Wert des Löslichkeitsprodukts, ist die Lösung gesättigt. Bei Zugabe weiterer Substanz bildest sich demnach ein Niederschlag.

  • Formuliere die Gleichgewichtreaktionen und gib die Einheit des Löslichkeitsprodukts an.

    Tipps

    Eine Ionensubstanz mit der allgemeinen $A_mB_n$ dissoziiert in $m \cdot {A^{a+}}_{(aq)}$-Kationen und $n \cdot {B^{b-}}_{(aq)}$-Anionen.

    Das Löslichkeitsprodukt berechnet sich als Produkt der Konzentrationen aller hydratisierten Ionen. Beachte dabei die stöchiometrischen Faktoren m und n.

    Lösung

    Das Löslichkeitsprodukt ist das Produkt der Konzentrationen der hydratisierten Ionen. Die Anionen und Kationen stehen dabei aber nicht immer im Verhältnis 1:1, wie bei NaCl.

    Calciumfluorid ($CaF_2$) zum Beispiel dissoziiert in ein Calcium-Kation und zwei Fluorid-Anionen.

    • $Ca{F}_2 \rightleftharpoons {Ca^{2+}}{(aq)} + 2 \cdot {{F}^-}{(aq)}$
    Auf den allgemeinen Ausdruck $A_mB_n$ bezogen, ist im Falle von $CaF_2$ $m= 1$ und $n= 2$. Laut der Formel für das Löslichkeitsprodukt ist dessen Einheit also abhängig von $m$ und $n$, d.h. der Anzahl der hydratisierten Ionen. Die Einheit kann demnach wie folgt berechnet werden.

    • [$K_L$] = ${mol^{n+m}}/{l^{n+m}}$
    Die Einheit des Löslichkeitsproduktes für die Dissoziation von Calciumfluorid ist somit ${mol^3}~/~{l^3}$.

  • Stelle das Massenwirkungsgesetz für den Lösevorgang von Natriumchlorid auf.

    Tipps

    Mit dem Massenwirkungsgesetz berechnet man die Gleichgewichtskonstante $K_c$.

    Das MWG ist das Verhältnis des Produkts der Konzentrationen der Produkte und des Produkts der Konzentrationen der Edukte im chemischen Gleichgewicht.

    Lösung

    Das MWG ist das Verhältnis des Produkts der Konzentrationen der Produkte und des Produkts der Konzentrationen der Edukte im chemischen Gleichgewicht.

    Allgemeine Gleichung einer Dissoziation:

    • $AB \rightleftharpoons A^+(aq) + B^-(aq)$
    Das MWG zu dieser Gleichung lautet dann:
    • $K_c = \frac {c({A^+}) \cdot c({B^-})} {c(AB)}$
    Auf das Beispiel des Lösevorgangs (Dissoziation) von Kochsalz bezogen, ergibt sich also:

    • $K_c = \frac {c({Na^+}) \cdot c({Cl^-})} {c(NaCl)}$
  • Prüfe, ob das Trinkwasser die Ansprüche bezüglich der Sulfat-Ionenkonzentration erfüllt.

    Tipps

    Wenn eine Lösung gesättigt ist, kann sich kein weiterer Stoff mehr lösen. Bei weiterer Zugabe kommt es zur Niederschlagsbildung.

    In einer gesättigten Lösung ergibt das Produkt der Konzentrationen der Ionen das Löslichkeitsprodukt.

    Lösung

    Das Löslichkeitsgleichgewicht für Bariumsulfat lautet:

    $BaSO_4$ $\rightleftharpoons$ ${Ba^{2+}}{(aq)}$ + ${{SO_4}^{2-}}{(aq)}$

    Damit ist das Löslichkeitsprodukt:

    $K_L = {{c(Ba^{2+})}^1}{(aq)} \cdot {{c({SO_4}^{2-})}^1}{(aq)}$

    Aus diesem kann bei gegebener Sulfat-Ionen-Konzentration die Konzentration an Barium-Ionen berechnet werden:

    $c(Ba^{2+}) = \frac {K_L} {c({SO_4}^{2-})}$ = $\frac {1,0~\cdot~10^{-10} {mol^2}/{l^2}} {2~*~10^{-3} {mol}/{l}}$ = $ 5~\cdot~10^{-8} {mol}/{l}$

    Andersherum kann bei gegebener Barium-Ionenkonzentration über das Löslichkeitsprodukt die Sulfat-Ionenkonzentration berechnet werden:

    $c({SO_4}^{2-}) = \frac {K_L} {c(Ba^{2+})}$ = $\frac {1,0~\cdot~10^{-10} {mol^2}/{l^2}} {1~*~10^{-4}{mol}/{l}}$ = $ 1,0~\cdot~10^{-6} {mol}/{l}$

    Die maximale Sulfat-Ionen-Konzentration von $2~\cdot~10^{-3} {mol}/{l}$ würde erst bei einer Konzentration von $5~\cdot~10^{-8} {mol}/{l}$ Barium-Ionen zur Fällung führen. Wenn aber erst bei $1~\cdot~10^{-4} {mol}/{l}$ eine erste Fällung auftritt, genügt das Trinkwasser also den Anforderungen.

  • Bestimme die Einheiten des Löslichkeitsprodukts folgender Substanzen.

    Tipps

    Eine Substanz dissoziiert in wässriger Lösung in Ionen. Die Anzahl der Ionen ist ausschlaggebend für die Einehit vom Löslichkeitsprodukt $K_L$.

    • [$K_L$] = ${mol^{n+m}}~/~{L^{n+m}}$

    Natriumchlorid dissoziiert in ein Natrium-Ion und ein Chlorid-Ion. Somit ist die Einheit des Löslichkeitsprodukts ${mol^2}~/~{l^2}$.

    Lösung

    Das Löslichkeitsgleichgewicht beschreibt das dynamische Gleichgewicht zwischen Bodensatz (Ionenkristalle) und gesättigter Lösung (hydratisierte Ionen). Eine Ionensubstanz ($A_mB_n$) dissoziiert in wässriger Lösung in Ionen ($m \cdot A^{a+}$-Kationen und $n \cdot B^{b-}$-Anionen):

    Die Einheit des Löslichkeitsprodukts ist somit abhängig von $m$ und $n$, d.h. der Anzahl der hydratisierten Anionen und Kationen.

    • [$K_L$] = ${mol^{n+m}}/{l^{n+m}}$
    Bei Ionensubstanzen mit dem Ionenverhältnis 1:1 ist damit die Einheit [$K_L$] = ${mol^{2}}~/~{l^{2}}$. Dazu zählen: Salze aus Alkalimetall und Halogenid ($NaF$), einprotonige Säuren ($HCl$), Alkalimetallhydroxide ($NaOH$) und andere Salze, wie z.B. $CaSO_4$.

    Hingegen haben Salzen mit dem Ionenverhätnis 1:2 oder 2:1 die Einheit [$K_L$] = ${mol^{3}}~/~{l^{3}}$. Dazu zählen: Salze aus Erdalkalimetall und Halogenid ($BaF_2$), zweiprotonige Säuren ($H_2SO_4$), Erdalkalimetallhydroxide ($Mg(OH)_2$) und andere Salze, wie z.B. $Na_2SO_4$ oder $CuCl_2$.

  • Berechne die Masse an Silberiodid, die in einem Liter Wasser löslich ist.

    Tipps

    Wenn die maximale Menge einer Substanz in einem Lösemittel gelöst ist, ist diese gesättigt.

    Somit ist das Löslichkeitsprodukt ($K_L$) erreicht.

    Um die Masse zu berechnen, benötigst du die Formeln $c=n/V$ und $n=m/M$

    Lösung

    Wenn das Produkt der Konzentrationen an Silber- und Iodid-Ionen dem Löslichkeitsprodukt entspricht, ist die maximale Konzentration (Löslichkeit) erreicht. Daher kann man mit $K_L$ rechnen.

    Da die Konzentration an Iodid-Ionen genauso groß ist wie die an Silber-Ionen, entspricht sie ebenfalls der Konzentration an Silberiodid:

    $ c({Ag^+}) = c({I^-}) = c(AgI)$:

    $c(AgI) = \sqrt[1+1]{K_L} = \sqrt[2] {1,5 \cdot 10^{-16}~{mol^2}/{l^2}}$

    $c(AgI) = {1,2~\cdot~10^{-8}} {mol}/{l}$

    Um nun die Masse an $AgI$ berechnen zu können, benötigen wir zwei grundlegende Formeln des stöchiometrischen Rechnens, die du hier im großen Bild sehen kannst. Durch Umstellen der Formeln berechnest du die Masse wie folgt:

    $c =n/V$ $\to (I)~n = c \cdot~V$

    $n =m/M$ $\to (II)~m=n \cdot~M$

    $(I)~in~(II)$: $m = c \cdot V \cdot M$

    $m(AgI) = {1,2~\cdot~10^{-8}} mol/l \cdot 1~l \cdot 234,8 {g}/{mol} = 2,8~\cdot~10^{-6}~g= 0,003~mg$

    An dieser geringen Menge siehst du, dass es sich bei Silberiodid um ein schwer lösliches Salz handelt.