Das SI-System definiert sieben Basisgrößen wie Zeit, Länge und Masse mit den entsprechenden SI-Einheiten wie Sekunde und Meter. Es handelt sich um klar festgelegte Werte, die auf physikalischen Konstanten beruhen und für vergleichbare Experimente wichtig sind. Praktische Einheitspräfixe wie Kilo oder Milli erleichtern die Angabe im Alltag.
Interessiert? Mehr dazu und viele weitere Informationen findest du im folgenden Text!
Beschreibung zum VideoAbgeleitete Einheiten und Vorsätze
Du fragst dich, wie du dir das elektrische Potenzial vorstellen kannst? In diesem Video wird es dir auf anschauliche Weise erklärt. Die Formel für das elektrische Potenzial wird hergeleitet und anschließend an einem Beispiel angewendet.
Auch zum Video über das elektrische Potenzial findest du interaktive Aufgaben und ein Arbeitsblatt. Teste doch direkt dein neu gewonnenes Wissen!
Ein sehr wichtiger Bestandteil der Naturwissenschaften ist das Experimentieren, denn nur durch Experimente kann man Ideen und Theorien überprüfen. Dabei werden meistens Messungen durchgeführt, die Messwerte liefern. Um diese Werte sinnvoll aufschreiben oder angeben zu können, braucht man für jede messbare Größe Einheiten. Damit Wissenschaftler aus den verschiedensten Ländern sinnvoll zusammenarbeiten können, gibt es ein internationales Einheitensystem, das sogenannte SI-System. In diesem sind die Einheiten für sieben Basisgrößen festgelegt. Die entsprechenden SI-Einheiten spielen in der Physik eine wichtige Rolle.
Das Internationale Einheitensystem
Im Internationalen Einheitensystem sind die sieben Basisgrößen festgelegt. Sie heißen Basisgrößen, weil sie nicht durch andere Größen ausgedrückt werden können. Umgekehrt kann aber jede Größe, die keine Basisgröße ist, durch die Basisgrößen ausgedrückt werden.
Basisgrößen und Basiseinheiten
Die sieben Basisrößen im SI-System sind die Zeit, die Länge, die Masse, die Stromstärke, die Temperatur, die Stoffmenge und die Lichtstärke. Zu jeder Basisgröße gehört auch eine Basiseinheit. Auch hier gilt, dass man alle anderen Einheiten von den SI-Einheiten ableiten kann. In der folgenden Tabelle findest du alle sieben Basiseinheiten mit Symbol und der dazugehörigen Basiseinheit:
Basisgröße
Symbol
Basiseinheit
Einheitenzeichen
Zeit
$t $
Sekunde
$\text{s}$
Länge
$ l $
Meter
$\text{m} $
Masse
$m $
Kilogramm
$\text{kg} $
Stromstärke
$ I $
Ampere
$\text{A} $
Temperatur
$T $
Kelvin
$\text{K} $
Stoffmenge
$n$
Mol
$\text{mol} $
Lichtstärke
$I_{\text{v}}$
Candela
$\text{cd}$
Eine wichtige Besonderheit der SI-Einheiten ist, dass es für ihre Werte feste Definitionen gibt, die auf physikalischen Konstanten beruhen. Die Dauer einer Sekunde ist beispielsweise über einen quantenmechanischen Vorgang in einem Cäsium-Atom definiert, deswegen wird auch manchmal der Begriff Atomsekunde verwendet. Die Länge eines Meters ist über die Lichtgeschwindigkeit festgelegt, die als Naturkonstante ebenfalls einen definierten Wert besitzt.
Es ist wichtig, dass die Größe der SI-Einheiten auf fest definierten Konstanten beruht, weil so Messungen und Experimente vergleichbar sind. Es können keine Unterschiede auftreten, die nur an verschiedenen Definitionen für die Einheiten liegen.
Einheitenvorsätze
Manchmal ist es praktisch, Einheiten mit Einheitenvorsätzen, den sogenannten SI-Präfixen, zu versehen. Dadurch können Angaben übersichtlicher gemacht werden und das Rechnen wird erleichtert. Und viele dieser Präfixe, also Vorsätze, benutzen wir auch intuitiv in unserem Alltag. Wenn dich jemand nach der Entfernung zwischen Berlin und Ankara fragt, wirst du die Antwort kaum in Metern $\left(2\,050\,000~\text{m} \right)$, sondern in Kilometern $\left( 2\,050~\text{km} \right)$ geben. Genauso nutzt du, zum Beispiel beim Zeichnen mit dem Geodreieck, ganz selbstverständlich die Einheit Millimeter, was ein tausendstel Meter ist. Und die Festplatte deines Computers hat vielleicht einen Speicherplatz von einem Terabyte. Das ist viel praktischer, als von $1\,000\,000\,000\,000$ Byte, also einer Billionen Byte zu sprechen. Die wichtigsten SI-Einheitenvorsätze findest du in der folgenden Tabelle:
Name
Symbol
Wert
Potenz
Tera
T
$1\,000\,000\,000\,000$
$10^{12}$
Giga
G
$1\,000\,000\,000$
$10^9$
Mega
M
$1\,000\,000$
$10^6$
Kilo
k
$1\,000$
$10^3$
Hekto
h
$100$
$10^2$
Deka
da
$10$
$10^1$
$1$
$10^0$
Dezi
d
$0{,}1$
$10^{-1}$
Zenti
c
$0{,}01$
$10^{-2}$
Milli
m
$0{,}001$
$10^{-3}$
Mikro
$\mu$
$0{,}000\,001$
$10^{-6}$
Nano
n
$0{,}000\,000\,001$
$10^{-9}$
Abgeleitete Einheiten
Wir hatten schon geschrieben, dass sich alle Einheiten aus den Einheiten der SI-Basisgrößenableiten lassen. Wir wollen uns zwei Beispiele dazu anschauen.
Betrachten wir zum Beispiel ein Auto, das auf der Autobahn fährt. Wir können ihm dann eine Geschwindigkeit zuordnen. Wenn wir aber einen Blick in die Tabelle werfen, sehen wir, dass die Geschwindigkeit keine SI-Größe ist. In diesem Beispiel erkennen wir jedoch leicht, welche Basiseinheiten wir brauchen, wenn wir uns überlegen, was die Geschwindigkeit ist. Sie besagt, welche Strecke das Auto in einer bestimmten Zeit zurücklegt. Die Basisgrößen findet man also in der Angabe Länge pro Zeit. Die dazugehörigen Basiseinheiten wären dann Meter pro Sekunde, oder $\frac{\text{m}}{\text{s}}$.
Ein anderes Beispiel ist die Dichte. Die Dichte gibt an, wie viel Masse eines Stoffes sich in einem bestimmten Volumen befindet. Die Masse ist eine Basisgröße und ihre Einheit ist das Kilogramm. Das Volumen ist eine von der Länge abgeleitete Größe, und zwar Länge mal Länge mal Länge $\left(\text{Länge}^3 \right)$. Die Einheit der Länge, also der Meter, steht auch in der dritten Potenz: $\text{m}^3$. Die Dichte ist also Masse pro Volumen mit der Einheit Kilogramm pro Kubikmeter, oder $\frac{\text{kg}}{\text{m}^3}$.
Teste dein Wissen zum Thema Si-Einheiten!
1.215.161 Schülerinnen und Schüler haben bereits unsere Übungen absolviert. Direktes Feedback, klare Fortschritte: Finde jetzt heraus, wo du stehst!
Noch nicht angemeldet?
Jetzt registrieren und vollen Zugriff auf alle Funktionen erhalten!
Dem Problem, dass in verschiedenen Ländern verschiedene Einheiten verwendet wurden, sollte mit dem SI-Einheitensystem entgegengewirkt werden.
Lösung
Die Kommunikation von Wissenschaftlern hat im Laufe der Zeit immer weiter zugenommen. Hiervon profitierte der wissenschaftliche Fortschritt allgemein: Erkenntnisse, die schon woanders auf der Welt gewonnen waren, mussten so nicht aufwendig reproduziert, sondern konnten direkt für die eigene Forschung genutzt werden. Hierbei zeigten sich aber immer wieder Schwierigkeiten, weil die Wissenschaftler zum Teil sehr verschiedene Größen und Einheiten verwendeten. Um Ergebnisse vergleichen zu können, mussten diese so immer erst in die gleichen Einheiten umgerechnet werden.
Um diesem Problem entgegenzuwirken, vereinbarten Wissenschaftler Einheitensysteme, die überregional verwendet werden sollten. Es gibt viele solcher Systeme, aber das SI-System (Système international d’unités) ist das in der Welt am weitesten verbreitete Einheitensystem. Es wurde 1954 in Paris eingeführt.
In der linken Spalte musst du den Namen, in der mittleren Spalte das Symbol und in der rechten Spalte den Wert eintragen.
Lösung
Die Verwendung von Vorsätzen erleichtert einem besonders bei sehr großen oder sehr kleinen Werten einiges an Schreibarbeit. Bei der Verwendung lauern allerdings auch Gefahren: Häufig werden Einheitenvorsätze beim Rechnen vergessen, was zu falschen Ergebnissen führt. Die Symbole stehen hier tatsächlich für Zahlenwerte.
Im Video wird gesagt, dass die Liste noch in beide Richtungen weitergeht. Hier siehst du Erweiterung in beide Richtungen:
Die Einheiten Newton (N) der Kraft und Joule (J) der Arbeit sind abgeleitete Einheiten, die sich aus Basiseinheiten zusammensetzen. Alle Einheiten werden hier mit den Basiseinheiten ausgedrückt.
Die Formelzeichen sind: Geschwindigkeit v, Zeit t, Strecke s, Beschleunigung a, Kraft F, Masse m und Arbeit W.
Lösung
Die Einheiten der Kraft (N) und der Arbeit (J) sind auch Einheiten des SI-Einheitensystems. Sie stellen jedoch keine Basiseinheiten dar und lassen sich demnach von den Basiseinheiten ableiten:
$1\ N = 1\frac{kg\cdot m}{s^2}$
$1\ J = 1\frac{kg\cdot m^2}{s^2}$
Es gibt viele weitere Beispiele für abgeleitete Einheiten:
Die Einheit der Frequenz: 1 Hertz = 1 $Hz$ = 1 $\frac{1}{s}$
Die Einheit der Ladung: 1 Coulomb = 1 $C$ = 1 $A\cdot s$
Die Einheit der Spannung: 1 Volt = 1 $V$ = 1 $\frac{kg\cdot m^2}{s^3\cdot A}$
Du musst zunächst das Datenvolumen (= Datengröße in bit) des Bildes berechnen, um anschließend die Übertragungsdauer ermitteln zu können.
Das Bild hat eine Datenvolumen von 4 838 400 bit = 4,8384 Mbit.
Lösung
Zunächst muss das Datenvolumen (= Datengröße) des Bildes ermittelt werden. Hierfür ist die Übertragungsrate von 8 bit/s und die benötigte Dauer gegeben.
Diese müssen multipliziert werden:
$V_{Daten}=7\ d \cdot 8\ bit/s = (7 \cdot 24 \cdot 60 \cdot 60)\ s \cdot 8\ bit/s = 4838400\ bit$
Um die Übertragungsdauer mittels W-Lan zu bestimmen, kann dieses Datenvolumen nun durch die angegebene Übertragungsrate geteilt werden:
$t=\frac{4838400\ bit}{1\ Gbit/s}=\frac{4838400\ bit}{10^9\ bit/s}=0,0048384\ s \approx 5\ ms$
Die Datenübertragung über ein modernes W-Lan-Netzwerk würde demnach eine Zeit von lediglich 5 ms in Anspruch nehmen.
Kilogramm (kg), die Einheit der Masse, hat als einzige Einheit des SI-Systems einen Vorsatz.
Lösung
Die SI-Einheit Kilogramm nimmt eine Sonderstellung ein, da sie die einzige Einheit des SI-Einheitensystems ist, die einen Vorsatz (kilo) hat. 1 Kilogramm entspricht demnach 1000 Gramm.
Alle Basiseinheiten des SI-Systems sind (bis auf das Kilogramm) genau anhand von Naturkonstanten definiert:
Ein Meter entspricht der Länge der Strecke, die Licht im Vakuum in der Zeit von 1/299792458 Sekunden durchläuft.
Ein Kilogramm ist die Masse des in Paris aufbewahrten Kilogrammprototyps.
Eine Sekunde ist das 9192631770-fache der Periodendauer der Strahlung, die beim Übergang zwischen den beiden Hyperfeinstrukturniveaus des Grundzustandes eines Cäsium-Atoms ausgesandt wird.
Ein Ampere ist die Stärke eines konstanten elektrischen Stromes, der durch zwei parallel angeordnete Leiter von einem Meter Länge fließt und zwischen diesen eine Anziehungskraft von $2 · 10^{-7}$ Newton hervorrufen würde.
Ein Kelvin ist der 273te Teil der thermodynamischen Temperatur des Tripelpunktes des Wassers.
Ein Mol ist die Teilchenmenge, die in 12 Gramm Kohlenstoff enthalten ist.
Ein Candela ist die Lichtstärke einer Strahlungsquelle, die Strahlung der Frequenz 540 · 1012 Hertz aussendet und deren Strahlstärke 1/683 Watt beträgt.
Die Leistung von Max ist in Watt (W) und die Leistung der Windkraftanlage in Megawatt (MW) angegeben.
Lösung
Max scheint in Annas Schilderung die Vorsätze vor den Einheiten überhört zu haben. Während Max auf seinem Fahrradtrainer eine nennenswerte Leistung von 400 Watt erreicht, schafft die Windkraftanlage bei gutem Wind eine Leistung von 2 Megawatt, was 2 000 000 Watt entspricht. Der Vorsatz "Mega" ersetzt hier den Faktor 1 000 000.
Max hat sich hier in einen Vergleich begeben, den er nur verlieren kann. So entspricht die von ihm erzielte Leistung nur $\frac{400\ W}{2\cdot 10^6 W}\cdot 100=0,02\%$ der Leistung der Windkraftanlage.
Man könnte demnach keineswegs einen Windpark durch ihn ersetzen. Im Gegenteil: es benötigte 5000 mal Max auf 5000 Fahrradtrainern, um die Leistung einer Windkraftanlage zu erzielen.
Diese Gedanken können auch noch weitergeführt werden. So erreichen moderne Kohle- und Atomkraftwerke eine Leistung von bis zu 2 GW und ersetzen damit wiederum etwa 1000 Windkraftanlagen. Der größte Staudamm der Welt, der Drei-Schluchten-Damm in China, erreicht sogar eine Leistung von 18 GW. Man bräuchte 45 000 000 sehr sportliche Menschen wie Max auf Fahrradtrainern, um diese Leistung für einen kurzen Moment zu erzielen.
Bewertung
Ø 3.1 / 23 Bewertungen
Du musst eingeloggt sein, um bewerten zu können.
Wow, Danke! Gib uns doch auch deine Bewertung bei Google! Wir freuen uns!
Wir setzen eigene Cookies, Cookies von Drittanbietern und ähnliche Technologien auf unserer Website ein. Einige davon sind notwendig, um Ihnen eine sichere Nutzung unserer Plattform zu gewährleisten. Andere sind nicht unbedingt erforderlich, aber helfen uns z.B. dabei, die Nutzung unseres Angebots auszuwerten und zu verbessern. Es wird zwischen „Notwendige Cookies“, „Funktionalität & Komfort“, „Statistik & Analyse“ und „Marketing“ unterschieden. Marketing-Cookies werden auch für die Personalisierung von Anzeigen verwendet. Dabei werden auch Cookies von Google gesetzt (Datenschutzbestimmungen von Google). Weitere Informationen finden Sie in unserer Datenschutzerklärung und unseren Cookie Details.
Um in den Einsatz der nicht notwendigen Cookies einzuwilligen, klicken Sie auf „Alle Cookies akzeptieren“. Oder Sie treffen unter „Cookies individuell einstellen“ eine individuelle Auswahl. Dort finden Sie auch weitere Informationen zu den Zwecken sowie eingesetzten Drittanbietern. Soweit Sie diese zulassen, umfasst Ihre Einwilligung auch die Übermittlung von Daten in Drittländer, die kein mit der EU vergleichbares Datenschutzniveau aufweisen. Mit Klick auf „Alles ablehnen“ werden nur notwendige Cookies gesetzt. Sie können Ihre Auswahl jederzeit anpassen oder widerrufen.
Bist du unter 16 Jahre alt? Dann klicke bitte „Alles ablehnen“ oder hole die Erlaubnis deiner Erziehungsberechtigten ein.