30 Tagekostenlos testen

Überzeugen Sie sich von der Qualität unserer Inhalte.

Linsen

Du möchtest schneller & einfacher lernen?

Dann nutze doch Erklärvideos & übe mit Lernspielen für die Schule.

Kostenlos testen
Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Lucy lernt 5 Minuten 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Lucy übt 5 Minuten 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    89%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Lucy stellt fragen 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
30 Tage kostenlos testen

Testphase jederzeit online beenden

Bewertung

Ø 3.4 / 16 Bewertungen

Die Autor*innen
Avatar
Team Digital
Linsen
lernst du in der Sekundarstufe 1. Klasse - 2. Klasse - 3. Klasse - 4. Klasse

Grundlagen zum Thema Linsen

Inhalt

Nach dem Schauen dieses Videos wirst du in der Lage sein, zu beschreiben, wie Lichtstrahlen durch Sammellinsen und Zerstreuungslinsen gebrochen werden und wie reelle und virtuelle Bilder entstehen können.

Zunächst lernst du, wie Mittelpunktstrahlen, Brennpunktstrahlen und Parallelstrahlen in der Sammellinse gebrochen werden. Anschließend lernst du, wie so ein reelles Bild eines Gegenstands entsteht.

Sammellinse

Abschließend lernst du, was sich bei einer Zerstreuungslinse unterscheidet, wie virtuelle Bilder entstehen und wie Galileos Fernrohr aufgebaut ist.

Zerstreuungslinse

Lerne etwas über Captain Sackbeard und seine Suche nach der Schatzinsel.

Das Video beinhaltet Schlüsselbegriffe, Bezeichnungen und Fachbegriffe wie Sammellinse, Zerstreuungslinse, konvex, konkav, Brennpunkt, Brennweite, Brennpunktstrahl, Parallelstrahl, Mittelpunktstrahl, optische Achse, reelles Bild virtuelles Bild und Fernrohr.

Bevor du dieses Video schaust, solltest du bereits wissen, wie man Lichtstrahlen konstruiert.

Nach diesem Video wirst du darauf vorbereitet sein, mehr über optische Abbildungen und das Abbildungsgesetz zu lernen.

Optische Linsen

Auch wenn du es vielleicht nicht weißt, benutzt du sehr wahrscheinlich jeden Tag optische Linsen. Zum Beispiel dann, wenn du eine Brille oder Kontaktlinsen trägst oder wenn du Fotos mit deinem Smartphone machst. Als optische Linsen beschreibt man in der Physik transparente Scheiben, die ein oder zwei gekrümmte und geschliffene Oberflächen besitzen. Alle Linsen haben die Funktion, Licht abzulenken. Es gibt verschiedene Linsenformen in der Physik.

Linsenformen

Die zwei wichtigsten Linsenformen in der Physik sind die Konvexlinsen und die Konkavlinsen. Als konvex bezeichnet man Linsen, die mindestens eine nach außen gewölbte Oberfläche haben. Dagegen haben konkave Linsen mindestens eine nach innen gewölbte Fläche. Du kannst dir das vielleicht so merken: Konvex enthält ein e so wie Berg – die Flächen sind nach außen gewölbt. Konkav enthält ein a wie Tal – die Flächen sind nach innen gewölbt.

Begriffe der Linsenabbildung

Um zu verstehen, was bei den verschiedenen Linsenformen passiert, nutzen wir das Modell der Strahlenoptik, die manchmal auch geometrische Optik genannt wird. Darin beschreiben wir Licht als Strahlen, die sich zwischen Grenzflächen immer geradlinig ausbreiten. An Grenzflächen können sie gebrochen werden.

Wir müssen zunächst ein paar Begriffe der Linsenabbildung lernen, um den Strahlengang besser verstehen zu können. Licht wird beim Durchgang durch eine Linse an den Grenzflächen gebrochen, also eigentlich zweimal: einmal beim Eintritt von der Luft in die Linse und einmal beim Austritt aus der Linse in die Luft. In der Strahlenoptik kann man allerdings meistens eine Vereinfachung nutzen – und zwar dann, wenn die Linse dünn und symmetrisch ist. Der Weg des Lichts kann dann so beschrieben werden, als würde es nur einmal gebrochen werden – und zwar an der Mittelebene der Linse. Das ist die Ebene, die die Linse in zwei gewölbte Hälften teilt. Die optische Achse ist eine gedachte Linie, die senkrecht auf der Mittelebene steht und genau durch die Mitte der Linse verläuft. Außerdem hat jede Linse einen Brennpunkt $F$ auf jeder Seite und eine Brennweite $f$, die den Abstand der Brennpunkte von der Mittelebene angibt. Deren Bedeutung unterscheidet sich aber schon leicht zwischen den verschiedenen Linsenarten.

Strahlengang bei Konvexlinsen

Reelles Bild

Wir betrachten zunächst Lichtstrahlen, die parallel zur optischen Achse laufen und von links auf eine Konvexlinse treffen. Sie werden so an der Mittelebene gebrochen, dass sie sich rechts von der Linse alle im selben Punkt schneiden. Dieser Punkt liegt auf der optischen Achse und ist der Brennpunkt $F_1$ der Linse. Sein Abstand zur Mittelebene ist gerade die Brennweite $f$. Im gleichen Abstand links von der Mittelebene hat die Konvexlinse auch einen Brennpunkt $F_2$. Weil alle parallelen Strahlen in einem Punkt gesammelt werden, nennt man Konvexlinsen auch Sammellinsen.

Eigenschaften von Linsen, Physik: Der Brennpunk

Wie sieht der Strahlengang aus, wenn wir ein Bild erzeugen wollen? Nehmen wir an, eine Kerze steht links von der Linse – und zwar in einem Abstand der zweifachen Brennweite, also $2f$. Lichtstrahlen, die von der Kerze ausgehen – ob gestreut oder vom Kerzenschein selbst –, verlaufen natürlich nicht alle parallel zur optischen Achse, sondern in alle Richtungen. Um den Abbildungsprozess zu verstehen, schauen wir uns drei spezielle Strahlen an, die von der Kerzenspitze ausgehen. Der erste verläuft von der Kerze ausgehend parallel zur optischen Achse in Richtung der Linse. Man nennt ihn deswegen auch Parallelstrahl. Wir wissen schon, was mit diesem Strahl passiert – er verläuft durch den Brennpunkt $F_1$. Der zweite Strahl, den wir betrachten, läuft genau durch den Schnittpunkt von Mittelebene und optischer Achse. Dieser Strahl wird nicht gebrochen, sondern läuft geradlinig weiter. Der dritte Strahl läuft durch den Brennpunkt auf der linken Seite der Linse. Man nennt ihn deswegen auch Brennstrahl. Er wird so gebrochen, dass er hinter der Mittelebene parallel zur optischen Achse weiterläuft. Das ist auch leicht ersichtlich, denn in der Strahlenoptik ist die Strahlrichtung immer umkehrbar und wir hatten schon festgestellt, dass Strahlen parallel zur optischen Achse durch den Brennpunkt laufen. Alle drei Strahlen treffen sich in einem Abstand von $2 \cdot f$ hinter der Linse und bilden dort einen Bildpunkt.

Strahlengang bei Konvexlinsen

Dieses Prozedere kann man für jeden Punkt der Kerze durchführen und erhält so deren Abbild auf der rechten Seite der Linse, das allerdings auf dem Kopf steht. Dieses Bild würde man sehen, wenn man einen Schirm hinter die Linse stellt. Man bezeichnet es daher auch als reelles Bild. Steht die Kerze, oder ganz allgemein das Objekt, links genau im Abstand $2f$ zur Mittelebene, ist das Bild genauso groß wie das Objekt. Wenn es in einem größeren Abstand steht, wird das Bild kleiner. Wenn der Abstand kleiner als $2 \cdot f$, aber größer als $f$ ist, wird das Bild vergrößert. Am besten prüfst du beide Fälle, indem du den Strahlengang selbst nachzeichnest.

Virtuelles Bild

Wir wollen noch einen Spezialfall betrachten. Wir stellen die Kerze dieses Mal in einem Abstand kleiner als $f$ links neben die Linse. Jetzt zeichnen wir den Parallelstrahl und den Mittelstrahl ein. Einen Brennstahl können wir hier nicht einzeichnen, da der Brennpunkt links der Kerze ist. Die Strahlen haben jetzt keinen Schnittpunkt mehr auf der rechten Seite, sondern laufen auseinander. Es gibt also keinen reellen Bildpunkt. Wir können die Strahlen allerdings nach links verlängern, wo sie sich irgendwann schneiden. Links von der Linse entsteht ein virtuelles Bild, das richtig herum und stark vergrößert ist.

Konvexlinse: Strahlengang bei virtuellen Bildern

Man kann dieses Bild nicht einfach auf einem Schirm abbilden, sondern braucht dazu eine weitere Optik. Diese Optik kann aber durchaus unser Auge sein, denn das ist auch eine Konkavlinse. Ein Beispiel, in dem so ein virtuelles Bild entsteht, ist eine Lupe.

Strahlengang bei Konkavlinsen

Auch bei der Konkavlinse betrachten wir zunächst Strahlen, die parallel zur optischen Achse von links auf die Linse treffen. In diesem Fall werden sie nicht auf einen Punkt fokussiert, sondern zerstreut. Deswegen nennt man sie auch Zerstreuungslinsen. Die Strahlen werden so gestreut, dass sie sich im Brennpunkt $F_1$ treffen würden, wenn man sie rückwärtig verlängern würde.

Abbildung Achsparalleler Strahlen bei einer Zerstreuungslinse

Mit Konkavlinsen können nur virtuelle Bilder erzeugt werden. Wir betrachten wieder eine Kerze, die links von der Linse steht – und zwar in einem Abstand von $2 \cdot f$. Zuerst wird der Parallelstrahl von der Kerzenspitze zur Mittelebene der Linse gezeichnet. Dort wird er von der optischen Achse weg gebrochen – und zwar so, dass die rückwärtige Verlängerung genau durch den Brennpunkt $F_1$ läuft. Als Zweites zeichnen wir den Mittelstrahl. Der Schnittpunkt von Mittelstrahl und Parallelstrahl ist der virtuelle Bildpunkt. Das Bild ist in diesem Fall eine Verkleinerung des Objekts.

Konkavlinse: Strahlengang beim virtuellen Bild

Zerstreuungslinsen werden zum Beispiel bei Brillen für Kurzsichtigkeit eingesetzt.

Transkript Linsen

Captain Sackbeard ist auf der Suche nach der Schatzinsel, aber es sieht nicht so aus, als ob er dafür die richtige Ausrüstung hätte. Er kennt sich wohl nicht sonderlich gut aus mit „Linsen“. Wir nutzen verschiedene Arten von Linsen, um Objekte größer und schärfer sehen zu können. Zum Beispiel in Brillen, im Mikroskop, dem Fernrohr, oder der Handykamera. Durch Linsen wird der Weg des Lichts beeinflusst, bevor es auf unser Auge trifft. Grundsätzlich gibt es zwei Arten von Linsen: „Sammellinsen“ die, wie ihr Name sagt, Licht „sammeln“ und „Zerstreuungslinsen“, die das Licht „zerstreuen“. Sehen wir uns als erstes die „Sammellinse“ genauer an. Von der Seite betrachtet ist sie nach außen gewölbt – das nennt man „konvex“. Wie genau Licht von einer konvexen Linse gesammelt wird, sehen wir, wenn wir ein Bündel paralleler Lichtstrahlen betrachten, das senkrecht auf die Linse trifft. Die Lichtstrahlen werden so gebrochen, dass sie alle durch den „Brennpunkt“ der Linse verlaufen. So können beispielsweise Lichtstrahlen von der Sonne mit einer Lupe auf einen Punkt „fokussiert“, also dort gesammelt werden, wodurch ein Brand entstehen kann – daher auch die Bezeichnung „Brennpunkt“. Da die Linse symmetrisch ist, gibt es auch auf der anderen Seite einen Brennpunkt. Man bezeichnet die Brennpunkte mit „F-eins“ und „F-zwei“ und ihren Abstand zur Linse, der auf beiden Seiten gleich ist, als „Brennweite“. Sie liegen mit der Linse auf der „optischen Achse“, einer gedachten Linie, die durch den Mittelpunkt der Linse verläuft. Aus der Symmetrie folgt, dass Lichtstrahlen, die von F-zwei kommend auf die Linse treffen, so gebrochen werden, dass sie auf der anderen Seite parallel verlaufen. „Brennpunktstrahlen“, also Strahlen, die durch den Brennpunkt verlaufen, werden so zu „Parallelstrahlen“, und umgekehrt genauso. Einfallende Strahlen können aber auch genau durch den Mittelpunkt der Linse verlaufen. Solche „Mittelpunktstrahlen“ werden nicht abgelenkt, also nicht gebrochen. Betrachten wir nun einen „Gegenstand“, der sich auf der optischen Achse befindet, und Licht in alle Richtungen streut. Wir können konstruieren, wie dieser durch die Linse abgebildet wird. Dazu ziehen wir von einem Punkt des Gegenstands einen „Mittelpunktstrahl“, der nicht gebrochen wird, und vom selben Punkt einen „Parallelstrahl“, der so gebrochen wird, dass er durch den Brennpunkt „F-Eins“ verläuft. Auch ein „Brennpunktstrahl“, der durch „F-Zwei“ und dann parallel verläuft, ist möglich. All diese Strahlen schneiden sich in einem Punkt. Dort muss sich der entsprechende Punkt des „Bildes“ befinden. Da wir die Form des „Gegenstands“ kennen, können wir das „Bild“ jetzt bereits vervollständigen, ohne es Punkt für Punkt konstruieren zu müssen. Es handelt sich hier um ein „reelles Bild“ – auch wenn es auf dem Kopf steht! Das heißt, es kann auf einem „Schirm“, oder einer Leinwand, aufgefangen und gezeigt werden. Das funktioniert allerdings nicht mehr, wenn sich der Gegenstand zwischen dem zweiten Brennpunkt und der Linse befindet, denn dann laufen „Mittelpunkt-“ und „Brennpunktstrahlen“ auseinander. Wenn man diese allerdings auf der Seite des „Gegenstands“ verlängert, laufen sie zu einem „virtuellen Bild“ zusammen, das gedanklich konstruiert, aber nicht abgebildet werden kann. Das ist es, was du siehst, wenn du durch eine Lupe hindurchblickst. Der Gegenstand sieht viel größer aus und steht nicht auf dem Kopf. Sammellinsen können dazu verwendet werden, Licht scharf zu fokussieren, und Gegenstände abzubilden. Wo sich die Brennpunkte genau befinden, hängt von der „Krümmung“ der Linse ab. Das ist auch bei „Zerstreuungslinsen“ so, allerdings sind diese nach innen gewölbt. Das nennt man „konkav“. Auch hier gibt es zwei Brennpunkte mit gleicher Brennweite. „Mittelpunktstrahlen“ treten wieder ungebrochen durch die Linse. „Parallelstrahlen“ werden allerdings zerstreut, laufen also auf der anderen Seite der Linse auseinander. Das lässt sich wieder mithilfe der Brennpunkte der Linse konstruieren, diesmal allerdings mit „F-zwei“, also auf der Seite des Gegenstands. Von dort aus müssen die „Brennpunktstrahlen“ konstruiert werden. Egal, wo sich der Gegenstand auf der optischen Achse befindet, „Mittelpunkt-“ und „Brennpunktstrahlen“ werden sich immer auf der Seite des Gegenstands schneiden. So entsteht ein „virtuelles Bild“, das wir als „Verkleinerung“ wahrnehmen, wenn wir durch die Linse blicken. Aufgrund der Umkehrbarkeit von Lichtwegen kann eine Zerstreuungslinse auch genutzt werden, um Licht aus verschiedensten Richtungen zu parallelen Strahlen zu bündeln. Das wurde zum Beispiel für ein einfaches Fernrohr von „Galileo Galilei“ genutzt, um ein von einer Sammellinse erfasstes Bild, in parallelen Strahlen auf das Auge zu projizieren. So kann, im Gegensatz zur Lupe, auch das Bild eines weit entfernten Körpers vergrößert betrachtet werden. Fassen wir zusammen: Es gibt „Sammellinsen“ und „Zerstreuungslinsen“. Sammellinsen sind „konvex“ geformt. Mit ihnen kann Licht fokussiert werden, und je nach Abstand ein reelles oder virtuelles Bild erzeugt werden. Zerstreuungslinsen sind „konkav“ geformt. Sie zerstreuen Licht, oder bündeln zerstreutes Licht zu parallelen Strahlen. Dabei entsteht immer ein virtuelles, verkleinertes Bild. Captain Sackbeard hat mittlerweile tatsächlich die Schatzinsel gefunden, aber den Unterschied zwischen Lupe und Fernrohr hat er immer noch nicht drauf.

1 Kommentar

1 Kommentar
  1. Klasse Video
    LG

    Von Harun, vor etwa einem Monat
30 Tage kostenlos testen
Mit Spass Noten verbessern
und vollen Zugriff erhalten auf

2'679

sofaheld-Level

6'290

vorgefertigte
Vokabeln

10'224

Lernvideos

42'176

Übungen

37'266

Arbeitsblätter

24h

Hilfe von Lehrer*
innen

laufender Yeti

Inhalte für alle Fächer und Schulstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.

30 Tage kostenlos testen

Testphase jederzeit online beenden