Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Interferenz elektromagnetischer Wellen

Interferenz beschreibt die Überlagerung von Wellen wie Wasserwellen oder Lichtstrahlen. Dabei treten konstruktive Interferenz mit maximaler Verstärkung und destruktive Interferenz mit Auslöschung von Wellen auf. Wann tritt Interferenz auf? Was sind die Voraussetzungen? Kannst du das mit Experimenten beweisen? Im folgenden Artikel erklären wir alles!

Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Bewertung

Ø 4.2 / 5 Bewertungen
Die Autor*innen
Avatar
Jakob Köbner
Interferenz elektromagnetischer Wellen
lernst du in der Sekundarstufe 5. Klasse - 6. Klasse - 7. Klasse

Interferenz elektromagnetischer Wellen Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Interferenz elektromagnetischer Wellen kannst du es wiederholen und üben.
  • Nenne die Definitionen von Interferenz und Kohärenz.

    Tipps

    Kohärenz kommt aus dem lateinischen Wort „cohaerere" und bedeutet „zusammenhängen“.

    Lösung

    Interferenz und Kohärenz sind zwei Schlüsselbegriffe der Wellen.

    Interferenz bedeutet soviel wie „überlagern", also das Wechselwirken mehrerer Wellen. Würden sie das nicht tun, könnten wir mehrere Wellen nicht kombinieren.

    Kohärenz ist fast so etwas wie das Gegenteil davon. Es bedeutet nämlich, dass die Wellen in einem Lichtbündel eine feste Phasenbeziehung haben. Sie müssen also die gleiche Frequenz haben, damit sich dessen Wellen Berge und Täler zu einander nicht verschieben.

    Das heißt nicht, dass sie nicht interferieren, sondern nur, dass sich die Interferenz (Überlagerung) der Wellen nicht mehr verändert.

    Das ist dann wichtig, wenn man ein gleichbleibenden Lichtstrahl braucht.

  • Beschreibe das Huygens'sche Prinzip.

    Tipps

    Die Gangunterschiede für Maxima und Minima sind beim Einzelspalt andersherum als beim Doppelspalt.

    Lösung

    Um zu verstehen, wie es beim Einfachspalt überhaupt zu Beugungserscheinungen kommen kann, muss man das Huygens'sche Prinzip der Elementarwellen kennen.

    Es besagt, dass eine ebene Welle als Summe von Elementarwellen betrachtet werden kann.

    Am Einfachspalt entstehen dann also Elementarwellen, welche natürlich miteinander interferieren.

    Dabei muss dann für konstruktive Interferenz der Gangunterschied der Wellen an den Spaltgrenzen ein halbes Vielfaches der Wellenlänge sein. Da es bei all den Elementarwellen immer eine um $\pi$ verschobene Welle gäbe, die die um ein ganzes Vielfaches verschobene auslöschen würde.

    Das erklärt, warum es beim Doppelspalt andersherum ist. Denn dort werden nur zwei Elementarwellen betrachtet, die miteinander interferieren. Man kann dort also den Gangunterschied direkt als Phasenverschiebung annehmen.

  • Berechne den Winkel für das erste Maximum am Einfachspalt.

    Tipps

    Denke daran, die Einheit der Spaltbreite um zu rechnen.

    Ein Maximum entsteht, wenn der Gangunterschied ein halbes Vielfaches der Wellenlänge $\lambda$ ist.

    Lösung

    Unter welchem Winkel das Licht nun gebeugt wird, hängt von der Wellenlänge und der Spaltbreite ab.

    Als Maximumsbedingung für den Einfachspalt haben wir

    $\sin(\varphi )=\dfrac{(2n+1)\lambda}{2g}$

    gegeben. Dabei ist schon einbezogen, dass wir die halbe Wellenlänge als Gangunterschied brauchen. Umgestellt zum Winkel $\varphi$ haben wir

    $\varphi=\sin^{-1}\left(\dfrac{(2n+1)\lambda}{2g}\right)$.

    $n=1$, da wir das erste Maximum suchen. Als Ergebnis erhalten wird dann:

    $\varphi=\sin^{-1}\left(\dfrac{(2+1)\cdot 500~\text{nm}}{2\cdot 2000~\text{nm}}\right)=0,384$.

  • Berechne den Abstand des zweiten Maximums zur Mitte am Doppelspalt.

    Tipps

    Du kannst dir hier auch ohne Winkel trigonometrisch eine Lösung ausdenken.

    Lösung

    Anhand des Aufbaus kann man bereits feststellen, an welcher Stelle welches Maximum liegen wird.

    Dazu nehmen wir folgende Gleichung und setzen ein:

    $x=\dfrac{n\cdot\lambda\cdot d}{a}$

    $x=\dfrac{2\cdot450~\text{nm}\cdot 1~\text{m}}{3500~\text{nm}}=0,26~\text{m}$.

    Wie man sieht ist die Bedingung hier, dass der Gangunterschied ein ganzes Vielfaches der Wellenlänge ist. Das kommt, da wir hier nur 2 Elementarwellen kombinieren und uns daher einfach überlegen, wie die Wellen für ein Maximum übereinander liegen müssen.

  • Nenne Eigenschaften der Spaltbeugung.

    Tipps

    Versuche dir vorzustellen, wie zwei gleiche Wellen versetzt übereinander liegen.

    Lösung

    Bei der Beugung am Spalt wird Licht je nach Wellenlänge verschieden stark abgelenkt, wodurch weißes Licht z.B. in sein Spektrum zerlegt wird.

    Letztendlich muss für konstruktive Interferenz der Gangunterschied (Phasenunterschied) ein ganzes Vielfaches der Wellenlänge sein, wodurch es auch mehrere Ordnungen gibt. Beim Einfachspalt ist das durch die ganzen Elementarwellen etwas anders, denn der Gangunterschied der äußeren Wellen muss ein halbes Vielfaches sein, da es sonst immer eine um $\pi$ verschobene Welle gibt, die sie auslöschen würde.

    Allgemein gibt es keine Begrenzung für die Anzahl der Ordnungen, allerdings kann man oft nur ein paar deutlich auf dem Schirm sichtbar machen.

  • Berechne die Beugung am Gitter.

    Tipps

    Du kannst die Positionen für die Wellenlängen einzeln berechnen und die Positionen vergleichen.

    Lösung

    Der Grad der Beugung ist abhängig von der Wellenlänge. Das beutet, dass die verschiedenen Wellenlängen in weißem Licht unterschiedlich gebeugt werde. Dadurch landen sie auch an verschiedenen Positionen auf dem Schirm.

    Auch hier gilt wieder

    $x=\dfrac{n\cdot\lambda\cdot d}{a}$.

    Wir betrachten nun die erste Ordnung und setzen für Rot ein:

    $x_R=\dfrac{1\cdot700~\text{nm}\cdot 1~\text{m}}{2000~\text{nm}}=0,35~\text{m}$

    und nun für das blaue:

    $x_B=\dfrac{1\cdot450~\text{nm}\cdot 1~\text{m}}{2000~\text{nm}}=0,225~\text{m}$.

    Die Differenz der beiden ist nun $\Delta x=x_R-x_B=0,125~\text{m}$.