Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Induktionsspannung durch Feldänderung

Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Bereit für eine echte Prüfung?

Das Induktion Durch Feldänderung Quiz besiegt 60% der Teilnehmer! Kannst du es schaffen?

Quiz starten
Bewertung

Ø 3.6 / 15 Bewertungen
Die Autor*innen
Avatar
Jakob Köbner
Induktionsspannung durch Feldänderung
lernst du in der Sekundarstufe 4. Klasse - 5. Klasse - 6. Klasse - 7. Klasse

Grundlagen zum Thema Induktionsspannung durch Feldänderung

Dieses Video beschäftigt sich mit der Induktion und erklärt anhand von Beispielen, wie diese funktioniert. Du wirst also lernen, wie durch eine Änderung des magnetischen Feldes in einer Leiterschleife (oder Spule, da eine Spule ja nichts anderes ist als mehrere Leiterschleifen hintereinander) eine Spannung induziert werden kann. Es werden 2 Beispiele dazu untersucht, zuerst ein Stabmagnet und eine Spule (entspricht einem bewegten, aber konstanten Feld) und dann zwei Spulen nebeneinander (entspricht einem sich mit der Zeit ändernden Feld).

Transkript Induktionsspannung durch Feldänderung

Hallo und herzlich willkommen zu Physik mit Kalle. Wir wollen uns heute aus dem Gebiet Elektrizität und Magnetismus die Erzeugung einer Induktionsspannung durch eine Änderung des magnetischen Feldes ansehen.  Für dieses Video solltet ihr bereits den Film "Das allgemeine Induktionsgesetz" gesehen haben. Auch "Die Erzeugung der Induktionsspannung durch Bewegung" kann allerdings nicht schaden. Wir lernen heute, wie man durch eine Feldänderung eine Induktionsspannung erzeugen kann und dann 2 Beispiele dazu. Als Erstes ein Stabmagnet und eine Spule, als Zweites 2 Spulen nebeneinander.  Das allgemeine Induktionsgesetz besagt ja, wenn sich der magnetische Fluss, durch die von einer Leiterschleife umschlossene Fläche ändert, oder auch durch die von einer Spule umschlossene Fläche, denn eine Spule ist ja nichts anderes als viele Leiterschleifen hintereinander, so tritt in der Leiterschleife oder Spule eine Induktionsspannung auf. Diese Flussänderung kann durch eine Bewegung, und zwar durch eine Bewegung des Feldes oder der Schleife, zustande kommen oder aber auch durch eine Feldänderung.  Das wollen wir erst mal mithilfe eines Stabmagneten etwas genauer ansehen. Hier haben wir einen Stabmagnet. Rot steht wie immer für den Nordpol, grün für den Südpol. Wie ihr euch erinnert, sehen die Feldlinien ungefähr so aus. Als Nächstes brauchen wir eine Spule, die wir neben unseren Stabmagneten legen. Wie ihr seht, ändert sich bei einer Bewegung der Spule auf den Magnet zu der magnetische Fluss durch die von der Spule umschlossene Fläche. Und das sollte eine Spannung induzieren. Wir schreiben uns auf: Bewegt sich der Magnet in die Spule hinein, so findet eine Flussänderung in der von der Spule umschlossenen Fläche statt. Wir überprüfen das Ganze mithilfe eines Spannungsmessgeräts. Wir sehen: Während sich der Magnet in die Spule hineinbewegt, ändert sich der Fluss durch die Spule und damit wird eine Spannung induziert. Wird der Stabmagnet in der Spule ruhig gehalten, findet keine Flussänderung statt und es wird keine Spannung induziert. Wenn ich den Magneten nun wieder herausziehe, wird eine Spannung in die andere Richtung induziert, die durch die Flussänderung verursacht wird. Mithilfe des Stabmagneten kann ich also in der Spule eine Spannung induzieren. Allerdings ist das, wenn man es nun genau nimmt, eine Flussänderung, die durch Bewegung stattgefunden hat. Oder anders ausgedrückt: Das Feld durch die Spule hat sich zwar geändert, aber nur, weil sich das Feld des Stabmagneten in die Spule hineinbewegt hat.  Den Fall eines sich ändernden Magnetfeldes, nämlich den einer Spule, die an eine Spannungsquelle angeschlossen wird, wollen wir uns nun im nächsten Kapitel ansehen. Lege ich an eine Spule eine Spannung an, dann fließt Strom durch die Spule und dieser sorgt dafür, dass sich ein Magnetfeld aufbaut. Und da ein sich aufbauendes Magnetfeld nichts anderes ist als eine Änderung des magnetischen Flusses, sollte ich in einer gut platzierten zweiten Spule in der Lage sein, eine Induktionsspannung zu messen, die so gerichtet ist, dass sie ein Gegenfeld zu dem sich aufbauenden Feld erzeugt. Na, das wollen wir doch gleich mal testen. Hier ist wieder unsere Spule, verbunden mit dem Spannungsmessgerät und daneben setzen wir jetzt eine zweite Spule, die wir mit einer Spannungsquelle verbinden. Außerdem bauen wir in den Kreislauf einen Schalter ein, damit wir die Spannungsquelle an- und ausschalten können. Wenn ich nun den Schalter schließe und das Magnetfeld in der linken Spule beginnt sich aufzubauen, kann ich, solange der Aufbau des Magnetfelds dauert, in der rechten Spule eine induzierte Spannung messen. Dies ist die Spannung, die durch die Flussänderung verursacht wird und versucht, ein Gegenfeld aufzubauen, das den Aufbau des Magnetfelds in der linken Spule hindert. Sobald der Aufbau des Magnetfelds abgeschlossen ist, wird keine Spannung mehr induziert, da sich ja der magnetische Fluss nicht mehr ändert. Wenn ich nun den Schalter wieder öffne, dann baut sich das Magnetfeld in der linken Spule ab. Die dadurch entstehende Flussänderung verursacht eine Induktionsspannung in der rechten Spule, die ein Feld aufbaut, das versucht, das sich abbauende Magnetfeld zu erhalten.  Wir wollen noch mal wiederholen, was wir gerade gelernt haben. Durch eine Änderung des magnetischen Feldes kann in einer Leiterschleife oder Spule eine Spannung induziert werden. Ein gutes Beispiel dafür war der Versuchsaufbau mit 2 Spulen, die linke an einer Spannungsquelle angeschlossen, die rechte an ein Spannungsmessgerät. Beim Einschalten der Spannungsquelle baut sich in der 1. Spule ein Magnetfeld auf, während dadurch in der 2. Spule eine Spannung induziert wird, die versucht, diesen Aufbau durch Aufbau eines Gegenfeldes zu hemmen. Beim Ausschalten der Spannungsquelle, was einen Abbau des Feldes in der 1. Spule zur Folge hat, wird in der 2. Spule eine Spannung induziert, die ein Magnetfeld erzeugt, das versucht, das sich abbauende Magnetfeld zu erhalten.  So, das war's schon wieder für heute. Ich hoffe, ich konnte euch helfen. Vielen Dank fürs Zuschauen. Vielleicht bis zum nächsten Mal. Euer Kalle.

Induktionsspannung durch Feldänderung Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Induktionsspannung durch Feldänderung kannst du es wiederholen und üben.
  • Bestimme, welche Kurve den Spannungsverlauf am besten beschreibt.

    Tipps

    Schau dir noch einmal das allgemeine Induktionsgesetz an.

    Das allgemeine Induktionsgesetz lautet $U_i = -N \cdot \frac{d\Phi}{dt}$.

    Fällt der Stabmagnet durch die Spule, dann ändert sich der magnetische Fluss $\Phi$ in der Spule.

    Lösung

    Der Stabmagnet ist von einem Magnetfeld umgeben. Durch die Bewegung durch die Spule ändert sich der magnetische Fluss $\Phi$ innerhalb der Spule. Die zeitliche Änderung des magnetischen Flusses führt nach dem Induktionsgesetz zu einer Induktionsspannung an den Spulenenden.

    Wenn der Stabmagnet in die Spule eintaucht nimmt der magnetische Fluss zu und eine Spannung wird induziert. Wenn der Stabmagnet die Spule wieder verlässt, nimmt der magnetische Fluss in der Spule ab. Es entsteht wieder eine Induktionsspannung, nur diesmal mit umgekehrtem Vorzeichen.

    Je schneller der Magnet durch die Spule fällt, desto höher ist die induzierte Spannung. Das lässt sich gut am Induktionsgesetz überprüfen.

    $\begin{align} U_i = -N \cdot \frac{d\Phi}{dt} \end{align}$

    Wenn nun die Zeitspanne in der sich der magnetische Fluss ändert, also $dt$, kleiner wird, dann wird die induzierte Spannung $U_i$ größer.

  • Gib an, wie die Induktionsspule auf Ein- und Ausschalten der Feldspule reagiert.

    Tipps

    Warum wird nur dann eine Spannung in der rechten Spule induziert, wenn sich das Magnetfeld in der linken Spule gerade auf- oder abbaut?

    Nach der Lenzschen Regel ist die Induktionsspannung immer so gerichtet, dass sie ihrer Ursache entgegenwirkt.

    Lösung

    Wenn der Schalter geschlossen wird, beginnt sich das Magnetfeld in der linken Spule aufzubauen. Während sich das Magnetfeld aufbaut, kann in der rechten Spule eine Spannung gemessen werden. Das allgemeine Induktionsgesetz besagt:

    $\begin{align} U_i= -N \cdot \frac{d \Phi}{dt} \end{align}$

    Während des Aufbaus des Magnetfeldes ist der magnetische Fluss durch die rechte Spule zeitlich veränderlich und eine Spannung wird induziert. Diese Spannung in der rechten Spule führt wieder dazu, dass ein Strom fließt und ein Magnetfeld entsteht. Dieses ist dem Magnetfeld der linken Spule entgegen gerichtet und hemmt somit dessen Aufbau. Man spricht von einem Gegenfeld.

    Die Lenzsche Regel fasst das hier auftretende Phänomen zusammen: Die Induktionsspannung ist stets so gerichtet, dass sie ihrer Ursache entgegenwirkt.

    Sobald der Aufbau des Magnetfeldes in der linken Spule abgeschlossen ist, verändert sich der magnetische Fluss in der rechten Spule nicht mehr. Nach dem Induktionsgesetz wird somit auch keine Spannung mehr induziert.

    Beim Öffnen des Schalters baut sich das Magnetfeld in der linken Spule wieder ab. Auch in diesem Fall ändert sich der magnetische Fluss: Er wird kleiner. In der rechten Spule ensteht wieder eine Induktionsspannung, diesmal mit umgekehrten Vorzeichen. Auch jetzt fließt durch die induzierte Spannung ein Strom, der wiederum ein Magnetfeld aufbauen lässt. Dieses Magnetfeld versucht, das sich abbauende Magnetfeld zu erhalten. Es wirkt wieder seiner Ursache (Abbau des Magnetfeldes) entgegen. Die linke Spule nennt man auch Feldspule. Sie erzeugt ein Magnetfeld, da sie an eine Stromquelle angeschlossen ist. Die rechte Spule nennt man auch Induktionsspule. Diese erzeugt ein Magnetfeld, wenn ein anderes Magnetfeld auf sie wirkt.

  • Gib an, wie sich die Kurve verändert.

    Tipps

    Bewegt sich der Stabmagnet durch die höhere Falhöhe langsamer oder schneller durch die Spule?

    Schau dir noch einmal das Induktionsgesetz an.

    Das allgemeine Induktionsgesetz lautet $U_i = -N \cdot \frac{d\Phi}{dt}$.

    Die induzierte Spannung $U_i$ ist proportional zur zeitlichen Änderung des magnetischen Flusses $\Phi$. Was passiert mit $U_i$, wenn durch die höhere Fallgeschwindigkeit die Zeit $dt$ kleiner wird?

    Lösung

    Durch die höhere Fallhöhe hat der Stabmagnet beim Erreichen der Spule eine größere Geschwindigkeit erreicht und durchfällt anschließend die Spule in einer kürzeren Zeit. Auch beim Verlassen der Spule besitzt der Stabmagnet eine höhere Geschwindigkeit, verglichen mit dem Stabmagneten, der aus 1 $m$ Höhe gefallen ist.

    Das allgemeine Induktionsgesetz $U_i = -N \cdot \frac{d\Phi}{dt}$ drückt aus, dass eine schnellere zeitliche Änderung des magnetischen Flusses eine höhere Spannung induziert.

    Durch die erhöhte Fallhöhe enstehen also größere Induktionsspannungen, welche durch höhere Peaks in der Kurve sichtbar werden. Die größere Geschwindigkeit führt auch dazu, dass Eintauchen und Herausfallen in kürzerer Zeit erfolgen als zuvor. Die Peaks in der Kurve werden also schmaler. Außerdem ist der Stabmagnet kürzer innerhalb der Spule, wodurch die Peaks enger zusammenrücken.

    Da beim Herausfallen aus der Spule die Geschwindigkeit des Stabmagneten etwas höher ist als beim Eintauchen, ist der zweite Peak etwas größer als der erste.

  • Bestimme, welche Stromkurven in der Feldspule welche Spannungen in der Induktionsspule hervorrufen.

    Tipps

    Die Induktionsspannung ist stets so gerichtet, dass sie ihrer Ursache entgegenwirkt.

    Schau dir noch einmal das Induktionsgesetz an und bedenke, dass die magnetische Flussdichte $B$ in Spulen proportional zur Stromstärke $I$ ist.

    Wenn der Strom konstant gehalten wird, dann ist auch das Magnetfeld konstant, welches von der Feldspule aufgebaut wird. Was bedeutet das für die induzierte Spannung in der Induktionsspule?

    Lösung

    Sobald Strom durch die Feldspule fließt, baut sie ein Magnetfeld auf. Wenn der Strom verändert wird, verändert sich auch das Magnetfeld.

    $\begin{align} U_i = -N \cdot \frac{d\Phi}{dt} \end{align}$

    Nach dem Induktionsgesetz entsteht eine Spannung an den Enden der Induktionsspule, sobald sich der magnetische Fluss durch die Spule ändert.

    Der magnetische Fluss $\Phi$ kann auch durch die magnetische Flussdichte $B$ und die Spulenfläche $A$ ausgedrückt werden.

    $\begin{align} \Phi = B \cdot A \end{align}$

    Da die Fläche der Spule konstant ist, können wir schreiben:

    $\begin{align} U_i = -N \cdot A \cdot \frac{dB}{dt} \end{align}$

    Da die Stromstärke an der Feldspule proportional zur Stärke des Magnetfeldes ist (für langgestreckte Spulen gilt: $B= \mu_0 \cdot \frac{N_f}{l_f}\cdot I$), können wir folgende Aussagen treffen:

    Wenn die Stromstärke $I$ in der Feldspule steigt, dann steigt auch die magnetische Flussdichte $B$ des Magnetfeldes. Dies führt dazu, dass sich der magnetische Fluss zeitlich ändert. Wir erhalten eine negative Induktionsspannung an der Induktionsspule. Je schneller dabei die Stromstärke in der Feldspule vergrößert wird, desto höher ist die induzierte Spannung.

    Sobald der Strom in der Feldspule konstant bleibt, ist auch das Magnetfeld und somit der magnetische Fluss konstant. Nach dem Induktionsgesetz wird in diesem Fall keine Spannung in der Induktionsspule induziert, weil sich der magnetische Fluss nicht zeitlich ändert.

    Wenn der Strom $I$ wieder verringert wird, dann verringert sich auch die Stärke des Magnetfeldes. Nach dem Induktionsgesetz wird in diesem Fall eine positive Spannung induziert.

    Die Eigenschaft, dass eine negative Spannung in der Induktionsspule induziert wird, wenn der Strom in der Feldspule steigt, und eine positive wenn der Strom sinkt, wird in der Lenzschen Regel definiert. Diese besagt, dass die Induktionsspannung stets so gerichtet ist, dass sie ihrer Ursache entgegen wirkt.

  • Nenne die Definition für das allgemeine Induktionsgesetz.

    Tipps

    Welche physikalische Größe kann induziert werden?

    Warum kann auch eine Spannung induziert werden, wenn sich die Spule nicht bewegt?

    Lösung

    Wenn sich in einer Spule der magnetische Fluss $\Phi$ durch die von ihr umschlossene Fläche $A$ ändert, wird eine Spannung $U_i$ induziert.

    Die Formel dazu lautet:

    $\begin{align} U_i= -N \cdot \frac{d\Phi}{dt} \end{align}$

    Es wird immer nur eine Spannung induziert. Diese bewirkt dann einen elektrischen Strom, welchen man dann Induktionsstrom $I_i$ nennt. Wenn wir also die Spule ruhig im homogenen Magnetfeld halten, wird keine Spannung induziert werden.

    Um eine Spannung zu induzieren gibt es die folgenden Möglichkeiten. Es kann sich die vom Magnetfeld durchdrungene Fläche, die Stärke des Magnetfeldes oder die Orientierung des Magnetfeldes ändern.

    Es ist also nicht unbedingt notwendig, die Spule zu bewegen, um eine Spannung zu induzieren. Dies ist z.B. auch möglich, indem man das Magnetfeld verändert. Zum Beispiel könnte man es mit einem Wechselspannungssignal erzeugen. Dadurch würde sich die Stärke und die Ausrichtung des Magnetfeldes stetig ändern. In diesem Fall würde demnach stetig eine Induktionsspannung durch die Feldänderung generiert werden.

  • Berechne die induzierten Spannungen.

    Tipps

    Ersetze im Induktionsgesetz den magnetischen Fluss $\Phi$ durch die magnetische Flussdichte $B$ und die Spulenfläche $A$.

    Welcher Zusammenhang besteht zwischen der magnetischen Flussdichte $B$ und der Stromstärke $I$ in einer langgestreckten Spule?

    Für eine langgestreckte Spule gilt: $B= \mu_0 \cdot \frac{N_f}{l_f} \cdot I$.

    Du erhältst: $U_i = -N_i \cdot \mu_0 \cdot \frac{N_f}{l_f} \cdot \frac{dI}{dt}\cdot A_f$.

    Lösung

    Nur wenn sich der magnetische Fluss in der Feldspule verändert, kann in der Induktionsspule eine Spannung induziert werden. Dafür muss sich die Stromstärke $I$ in der Feldspule ändern. Eine Induktionsspannung entsteht demnach zwischen $0$ und $2s$ im Bereich a und dann noch einmal zwischen $5$ und $10s$ im Bereich c. In der Zeitspanne von $2s$ bis $5s$ ist die Stromstärke und damit auch der magnetische Fluss konstant. Hier wird daher keine Spannung in der Induktionsspule induziert.

    Für die Berechnung beginnen wir mit dem Induktionsgesetz.

    $\begin{align} U_i = -N_i \cdot \frac{d\Phi}{dt} \end{align}$

    Da $\Phi = B \cdot A$ gilt und weil die Fläche konstant bleibt, lässt sich schreiben:

    $\begin{align} U_i = -N_i \cdot A \frac{dB}{dt} \end{align}$

    In einer langgestreckten Spule gilt $B = \mu_0 \cdot \frac{N_f}{l_f} \cdot I$. Eingesetzt erhalten wir

    $\begin{align} U_i = -N_i \cdot \mu_0 \frac{N_f}{l_f} \cdot \frac{dI}{dt} \cdot A \end{align}$

    Mit dieser Formel ergibt sich für den Zeitraum von $0$ bis $2~s$ eine Spannung von $U_a=-0,40~mV$. Im Zeitraum $2$ bis $5~s$ verändert sich die Stromstärke in der Feldspule nicht. Die induzierte Spannung ist also $U_b=0,00~mV$. Von $5$ bis $10~s$ wird eine Spannung von $U_c=0,16~mV$ induziert. Die Lenzsche Regel sagt aus, dass die Induktionsspannung stets so gerichtet ist, dass sie ihrer Ursache entgegen wirkt. Dies erklärt die negative Spannung im Bereich a und die positive im Bereich c.

30 Tage kostenlos testen
Mit Spass Noten verbessern
und vollen Zugriff erhalten auf

8'776

sofaheld-Level

6'601

vorgefertigte
Vokabeln

7'367

Lernvideos

35'223

Übungen

32'843

Arbeitsblätter

24h

Hilfe von Lehrkräften

laufender Yeti

Inhalte für alle Fächer und Schulstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.

30 Tage kostenlos testen

Testphase jederzeit online beenden