30 Tagekostenlos testen

Überzeugen Sie sich von der Qualität unserer Inhalte.

Temperaturen auf der Erde und im All

Bewertung

Ø 4.1 / 12 Bewertungen

Die Autor*innen
Avatar
Stefan Kayser
Temperaturen auf der Erde und im All
lernst du in der Sekundarstufe 1. Klasse - 2. Klasse

Beschreibung Temperaturen auf der Erde und im All

Woltest du schon immer einmal die Temperatur der Sonne, Sterne oder Planeten vermessen? Dann gibt dir dieses Video eine Erklärung, warum du mit einem normalen Themometer dieses nicht erreichen kannst. Forscher haben aber eine clevere Möglichkeit erarbeitet, um Himmelskörper vermessen zu können. Damit sind wir auch in der Lage die Temperaturen im Weltall zu bestimmen.

4 Kommentare

4 Kommentare
  1. @Stevhund

    Die Übungen zu diesem Thema findest du bei den Videos die die Spannung behandeln. Daher schaue einmal in der Elektrizitätslehre nach.

    Von Karsten S., vor etwa 5 Jahren
  2. Gibt es Übungen zur Blitzentstehung?

    Von Stevhund, vor etwa 5 Jahren
  3. 0°C entsprechen + 273,15 K (es gibt keine negativen Kelvinwerte)

    Von Micha Suhr, vor fast 6 Jahren
  4. es ist 273,15

    Von Nicole Ahrens, vor mehr als 6 Jahren

Temperaturen auf der Erde und im All Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Temperaturen auf der Erde und im All kannst du es wiederholen und üben.
  • Gib an, was die Temperatur ist und wie du sie auf der Erde messen kannst.

    Tipps

    Die Textabschnitte dienen der Wiederholung der Begriffe Temperatur und Thermometer.

    Lösung

    Die Temperaturmessung mit dem Flüssigkeitsthermometer macht sich das Ausdehnungsverhalten von Stoffen bei Temperaturzunahme zu nutze. Das kann man sich gut mit Hilfe des Teilchenmodells vorstellen.

    Um ein Flüssigkeitsthermometer im Experiment oder im Alltag richtig einzusetzen, müssen folgende Dinge beachtete werden: Die Flüssigkeit im Innern muss genug Zeit haben, um sich zu erwärmen. Die Temperatur kann erst abgelesen werden, wenn die Höhe der Flüssigkeitssäule sich nicht mehr verändert. Außerdem kann man nicht mit jedem Thermometer jede Temperatur (genau) messen. Man muss also schauen, dass das Thermometer zum Messbereich passt. Sonst erhält man keine oder falsche Messergebnisse. Unter Umständen wird das Thermometer sogar zerstört.

  • Fasse dein Wissen über die kosmische Hintergrundstrahlung zusammen.

    Tipps

    Die Temperaturen des Weltalls werden über die Informationen ermittelt, die Forscher aus der Strahlung aus allen Teilen des Universums erhalten.

    In den leeren Teilen des Universums kann nur die kosmische Hintergrundstrahlung gemessen werden.

    Im Weltraum ist es abseits von Wärme spendenden Sternen sehr kalt. Dort bewegt sich die Temperatur nahe am absoluten Nullpunkt von 0 Kelvin.

    Lösung

    Die kosmische Hintergrundstrahlung ist ein Relikt aus der Zeit des Urknalls und wird heute als ein Beweis aufgeführt, dass die Urknalltheorie stimmt.

    Man kann sich die kosmische Hintergrundstrahlung als Temperatur des Universums vorstellen. Allerdings nur dort, wo nicht die Strahlung von Sternen oder anderen Objekten die kosmische Hintergrundstrahlung überlagert. Der Strahlung, die die Forscher aus diesen leeren Teilen des Universums empfangen, kann man im Mittel eine Temperatur von rund 3 Kelvin zuordnen. Das entspricht etwa -270° Celsius!!! Es ist also unvorstellbar kalt. Die kosmische Hintergrundstrahlung ist nicht weit entfernt vom absoluten Nullpunkt bei 0 Kelvin.

  • Erläutere die Temperaturangabe zum Planeten Venus.

    Tipps

    Lucas hat eine Temperaturangabe in Kelvin gefunden.

    Die Werte in Kelvin sind immer um 273 höher als in Grad Celsius.

    Subtrahiere 273 von der Temperaturangabe in Kelvin, um den Wert in Grad Celsius zu erhalten.

    Lösung

    Um den Wert in Grad Celsius zu erhalten, muss Lucas vom Kelvin-Wert 273 abziehen: 737 K - 273 = 464°C.

    Die Oberflächentemperatur ist auf der Venus sehr hoch. Das liegt daran, dass die Umlaufbahn der Venus näher an der Sonne liegt als die der Erde. Aufgrund dieser hohen Temperatur sowie der Zusammensetzung der Atmosphäre und des hohen Druckes ist die Venus ein lebensfeindlicher Ort.

    Am Himmel kann man die Venus aber gut beobachten, da sie sehr hell ist. Sie trägt auch die Namen Morgenstern und Abendstern.

  • Vergleiche die Temperaturen in unserem Sonnensystem mit Hilfe der Celsius- und der Kelvinskala.

    Tipps

    Schätze die Größenordnungen der Temperaturen in unserem Sonnensystem ab.

    0 Kelvin entspricht -273° Celsius. Rechne entsprechend um.

    Merkur ist der sonnennähste Planet, Neptun der sonnenfernste. Die Erde liegt dazwischen.

    Die Sonne ist der Energielieferant in unserem Sonnensystem.

    Im freien Raum soll die Temperatur der kosmischen Hintergrundstrahlung entsprechen.

    Lösung

    Die Sonne besitzt in unserem Sonnensystem die höchste Oberflächentemperatur. Der sonnennahe Merkur besitzt von allen Planeten die höchste Temperatur auf der Oberfläche. Je weiter die Planeten von der Sonne entfernt sind, desto kälter ist es auf ihrer Oberfläche. Im freien Raum herrscht eine Temperatur nahe des absoluten Nullpunktes.

    Werden in der Physik Temperaturen im astronomischen Bereich angegeben, geschieht die häufig in der Kelvinskala. Das liegt daran, dass es dort keine negativen Temperaturwerte gibt. Der absolute Nullpunkt liegt bei Null Kelvin. Will man einen Wert von Kelvin in Grad Celsius umrechnen, so muss man 273 addieren. möchte man hingegen eine Temperatur von Grad Celsius in Kelvin umrechnen, so muss man 273 subtrahieren (siehe Formeln). Damit du beim Umrechnen nicht durcheinander kommst, kannst du dir merken, dass die Temperatur in Kelvin immer größer als die Temperatur in Grad Celsius sein muss.

  • Gib an, wie man die Temperatur der Sonne messen kann, ohne sich zu verbrennen.

    Tipps

    Wie wird die Temperatur von Objekten im Weltall bestimmt?

    Welche dieser Daten können Aufschluss über die Temperatur liefern?

    Lösung

    Den Wissenschaftlern stehen heutzutage sehr viele Messgrößen und Daten rund um die Sonne zur Verfügung. Volumen und Rotationsgeschwindigkeit oder die Umlaufdauer eines Planeten liefern jedoch keine Aussagen über die Temperaturen der Sonne.

    Für die Bestimmung der Temperatur auf der Sonnenoberfläche wird die Information über die Strahlung der Sonne verwendet. Der Energie der gemessenen Strahlung wird eine Temperatur zugeordnet. Ein ungefährer Temperaturbereich von 5 000 bis 6 000 Kelvin kann dabei bereits über die gelbe Farbe der Sonne festgelegt werden. Sie liegt farblich zwischen den heißen weißen und weißgelben Sternen und den kühleren orangen und roten Sternen.

  • Bestimme mit Hilfe des Diagramms die Temperaturbereiche der verschiedenen Sternentypen.

    Tipps

    Die Sternentypen sind im Diagramm grau unterlegt und beschriftet.

    An welcher Achse kannst du die Temperatur der Sterne ablesen?

    Wie weit links oder rechts liegen die Temperaturgrenzen der Gruppen? Manche davon musst du abschätzen.

    Lösung

    Die meisten Sterne unseres Universums befinden sich im Bereich der Hauptreihe. Sie umfassen dabei alle möglichen Temperaturbereiche (von links - hohe Temperaturen bis rechts - niedrige Temperaturen) und damit auch alle Farbklassen (von blau/weiß über gelb bis orange/rot) sowie je nach Größe sämtliche Leuchtkraftbereiche. In diesem Ast liegt auch unsere Sonne. In Sternen der Hauptreihe findet im Innern Kernfusion von Wasserstoff zu Helium statt.

    Weiße Zwerge hingegen besitzen immer eine sehr hohe Temperatur. Sie liegen im Diagramm weit links. Daher kommt ihre weiße Farbe. Sie sind jedoch aufgrund ihrer geringen Größe relativ leuchtarm. Ein weißer Zwerg wird sich beispielsweise einmal aus unserer sterbenden Sonne entwickeln, nachdem sich diese zunächst zu einem roten Riesen ausgedehnt hat.

    Riesen und Überriesen besitzen aufgrund ihrer enormen Größe eine hohe Leuchtkraft und je nach Temperatur meist eine gelbliche, orange oder rote Farbe. Ihre Oberflächentemperaturen liegen damit im mittleren bis niedrigen Bereich für Sterne. Sie befinden sich eher rechts im Diagramm. Sie bilden sich, sobald in einem Stern die Wasserstoffvorräte für die Kernfusion verbraucht sind.

30 Tage kostenlos testen
Mit Spass Noten verbessern
und vollen Zugriff erhalten auf

10'234

Lernvideos

42'527

Übungen

37'548

Arbeitsblätter

24h

Hilfe von Lehrer/
-innen

laufender Yeti

Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.

30 Tage kostenlos testen

Testphase jederzeit online beenden