Exponentialfunktion – Definition und Erklärung

in nur 12 Minuten? Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
-
5 Minuten verstehen
Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.
92%der Schüler*innen hilft sofatutor beim selbstständigen Lernen. -
5 Minuten üben
Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.
93%der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert. -
2 Minuten Fragen stellen
Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.
94%der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Grundlagen zum Thema Exponentialfunktion – Definition und Erklärung
Was ist eine Exponentialfunktion?
Wenn ein Bestand in gleichen Perioden immer um den gleichen Faktor wächst, liegt exponentielles Wachstum vor.
Beispiel
An einem Raumschiff befindet sich Weltraumrost. Anfänglich deckt der Rost $1~\text{cm}^2$ ab. Jede Stunde verdoppelt sich diese Fläche.
Die gleichbleibenden Zeitschritte sind hier eine Stunde lang und der stets gleiche Faktor beträgt $2$.
Ein solches Wachstum kann mithilfe einer Exponentialfunktion dargestellt werden. Diese lautet hier $f(x)=2^x$.
Exponentialfunktion: Definition und Erklärung
Bei einer Exponentialfunktion steht die Variable $x$ im Exponenten.
Weil eine Exponentialfunktion eine Funktion ist, kann genauso vorgegangen werden wie bei schon bekannten Funktionen: Man kann eine Wertetabelle erstellen. Hierfür werden zu bestimmten Werten für $x$ die Funktionswerte berechnet:
- $f(1)=2^1=2$
- $f(2)=2^{2}=4$
- $f(3)=2^{3}=8$
- …
Nun können die Werte auch in die „andere Richtung“ berechnet werden:
- $f(0)=2^0=1$
- $f(-1)=2^{-1}=\frac12$
- $f(-2)=2^{-2}=\frac14$
- ...
Diese Wertepaare $(x|f(x))$ können in ein Koordinatensystem übertragen werden. So erhält man den Graphen der Funktion.
Ausblick
Eine Funktion der Form $f(x)=c\cdot a^x$ mit $a\gt 0$ wird als Exponentialfunktion bezeichnet. Dabei ist $c$ der sogenannte Anfangswert und $a$ der Wachstumsfaktor. In dem Beispiel mit dem Rost am Raumschiff ist $c=1~\text{cm}^2$ und $a=2$.
Betrachtet man die Funktion $f(x)=a^x$, kann man in Abhängigkeit des Wachstumsfaktors $a$ feststellen:
Für $0\lt a\lt 1$ ist der Funktionsgraph fallend. Für $a\gt 1$ ist der Funktionsgraph steigend. Dies ist in dem obigen Beispiel für $a=2$ zu erkennen. Dort ist auch der charakteristische Verlauf einer Exponentialfunktion zu sehen: eine gekrümmte Kurve.
Wertetabelle einer Exponentialfunktion
x | f(x) | in Potenzschreibweise: f(x)=2x |
---|---|---|
-2 | 0,25 | 2-2 |
-1 | 0,5 | 2-1 |
0 | 1 | 20 |
1 | 2 | 21 |
2 | 4 | 22 |
3 | 8 | 23 |
Transkript Exponentialfunktion – Definition und Erklärung
Achtung! Sicherheitsalarm! Die Integrität des Schiffes ist gefährdet! Weltraumrost zerstört die Außenhülle! Tatsächlich! Die Roststelle ist schon einen Quadratzentimeter groß! Der Rost muss schnell entfernt werden, denn er verbreitet sich exponentiell. Jede Stunde verdoppelt sich seine Fläche. Eine solche Entwicklung lässt sich besonders gut mit einer Exponentialfunktion beschreiben. In diesem Video beschäftigen wir uns mit der Definition von Exponentialfunktionen und einer Erklärung, wie diese aussehen. Zunächst zur Definition: Eine Exponentialfunktion ist eine Funktion, bei der die Variable im Exponenten steht. Dadurch wirken diese Funktionen auf den ersten Blick vielleicht etwas weniger greifbar als die bisher bekannten Funktionen. Du gehst aber genauso vor, wie bisher. Du beginnst mit einer Wertetabelle. Am Anfang, also zum Zeitpunkt Null, bedeckt der Rost 1 Quadratzentimeter. Nach einer Stunde bedeckt der Rost die doppelte Fläche, also '1 Quadratzentimeter mal 2'. Das sind 2 Quadratzentimeter. Nach einer weiteren Stunde, also nach 2 Stunden, hat sich die Fläche erneut verdoppelt. Es sind nun '2 mal 2 Quadratzentimeter' also 4 Quadratzentimeter. Nach der dritten Stunde sind wir bei '2 mal 2 mal 2 Quadratzentimetern', und somit bei '8 Quadratzentimetern'. Diese Produkte können wir auch als Potenzen schreiben. Die 2 ist dann einfach '2 hoch 1'. Jetzt sehen wir, dass in den Exponenten genau die Anzahl vergangener Stunden auftaucht. Nehmen wir die Anzahl der Stunden als Variable erhalten wir für eine sich stündlich verdoppelnde Größe eine Exponentialfunktion. Diesen Zusammenhang können wir natürlich auch in einem Koordinatensystem veranschaulichen: Für 'x gleich 1' erhalten wir 'f von x gleich 2'. Für 'x gleich 2' 'f von x gleich 4' für 'x gleich 3' 'f von x gleich 8'. So können wir auch den Startwert deuten: Bei 'x gleich Null' war die Fläche einen Quadratzentimeter groß. '2 hoch Null' ist also 1. Wir können sogar in die Vergangenheit schauen. Eine Stunde VOR dem Startzeitpunkt, also bei 'x gleich minus 1', war die Fläche halb so groß wie der Startwert. Das sind '0,5 Quadratzentimeter' oder '2 hoch minus 1'. Zwei Stunden vor dem Startzeitpunkt, also bei 'x gleich minus 2', war die Fläche folglich halb so groß wie die Hälfte des Startwerts. Das sind '0,25 Quadratzentimeter' oder '2 hoch minus 2'. Verbinden wir die Punkte im Koordinatensystem, erhalten wir den Graphen der Funktion. Fassen wir das noch einmal zusammen: Eine Exponentialfunktion ist eine Funktion, bei der die Variable im Exponenten steht. Sie beschreibt funktionale Zusammenhänge, bei denen sich eine Größe in festen Abständen jeweils um den gleichen Faktor verändert. Zu jedem x-Wert ergibt sich also eine andere Potenz zur Basis. Ist die Basis 2, dann beschreibt die Funktion eine Größe, die sich mit jedem Schritt verdoppelt. Der Wert 'x gleich Null' entspricht dann dem Startwert. Besitzt eine Exponentialfunktion keinen Vorfaktor, ist dieser Wert immer 1, denn jede Zahl 'hoch Null' ist 1. Der Graph einer Exponentialfunktion sieht dann ungefähr so aus. Der dreiachsgelagerte, KI-gesteuerte Antispatialkorrosionsdekompressor ist aufgebaut, justiert, ausbalanciert und eingestellt. Nimm das, Weltraumrost! Na also!
Exponentialfunktion – Definition und Erklärung Übung
-
Bestimme die Funktionswerte.
TippsBei der Funktion $f(x)=2^x$ verdoppelt sich der Funktionswert, wenn der $x$-Wert um $1$ zunimmt.
Den Funktionswert $f(0) =2^0$ findest du, indem du den Funktionswert $f(1) =2^1$ durch $2$ dividierst.
Ist $g(x) =3^x$, so ist $g(1)=3^1=3$ und $g(-2) = 3^{-2}=\frac{1}{9}$.
LösungBei einer Exponentialfunktion steht die Variable im Exponenten. Dadurch vervielfacht sich der Funktionswert bei regelmäßiger Zunahme der $x$-Werte immer um denselben Faktor. Der Faktor für die Vervielfachung der Funktionswerte bei Zunahme von $+1$ der $x$-Werte entspricht dem Funktionswert $f(1)$.
Bei der Funktion $f(x) = 2^x$ verdoppelt sich also der Funktionswert, wenn der $x$-Wert um $1$ wächst und halbiert sich der Funktionswert, wenn sich der Abstand um $1$ verringert.
So erhältst du folgende Wertetabelle:
$ \begin{array}{|r|l|l|} \hline \\ x & f(x) & 2^x \\ \hline \\ -2 & 0,25 & 2^{-2} \\ \hline \\ -1 & 0,5 & 2^{-1} \\ \hline \\ 0 & 1 & 2^0 \\ \hline \\ 1 & 2 & 2^1 \\ \hline \\ 2 & 4 & 2^2 \\ \hline \\ 3 & 8 & 2^3 \\ \hline \end{array} $
-
Vervollständige die Sätze.
Tipps$f(x) = x^2$ ist keine Exponentialfunktion, aber $f(x) = 3^x$ ist eine Exponentialfunktion.
Ist $f(x) = 3^x$, so ist $f(4) = 3^4= 3 \cdot 3^3 = 3 \cdot f(3) = 3 \cdot 3 \cdot f(2)\ldots$
In dem Term $a^b$ ist $a$ die Basis und $b$ der Exponent.
Der Term $a^b$ ist eine Potenz.
Im Term $c\cdot d$ sind $c$ und $d$ Faktoren.
LösungBei einer Exponentialfunktion steht die Variable im Exponenten. Dadurch ändert sich der Funktionswert bei einem Zuwachs des $x$-Wertes um $1$ jeweils um denselben Faktor. Umgekehrt ist jede Funktion mit dieser Eigenschaft eine Exponentialfunktion. Die verschiedenen Funktionswerte einer Exponentialfunktion sind jeweils verschiedene Potenzen derselben Basis.
Der Graph einer Exponentialfunktion ist aufgrund des (beim Exponenten $x$) stets zunehmenden bzw. (beim Exponenten $-x$) stets abnehmenden Zuwachses gekrümmt, und zwar immer nur in eine Richtung.
Mit diesen Überlegungen kommst du auf folgende Sätze:
- Die Variable einer Exponentialfunktion ... steht im Exponenten.
- Der Graph einer Exponentialfunktion ... ist gekrümmt.
- Eine Funktion, bei der sich die Funktionswerte von jedem ganzzahligen $x$-Wert zum nächsten verdoppeln, ... ist eine Exponentialfunktion.
- Jeder einzelne Funktionswert einer Exponentialfunktion ... ist jeweils eine andere Potenz zu derselben Basis.
-
Bestimme die Funktionswerte.
TippsDie Funktion $f(x) = 2^x$ nimmt nur positive Werte an.
Setze den gegebenen Wert für $x$ in die Funktion ein und rechne den Funktionswert aus.
Für $f(x) = 5^x$ und $x=-1$ ist $f(-1) = 5^{-1} = \frac{1}{5} = 0,\!2$.
LösungDie Funktionswerte einer Exponentialfunktion sind verschiedene Potenzen einer festgelegten Basis. Du kannst die Funktionswerte ausrechnen, indem du den vorgegebenen Wert der Variablen in den Funktionsterm einsetzt. Dann rechnest du den konkreten Wert der entsprechenden Potenz aus:
- Für die Funktion $f(x) = 3^x$ und die Stelle $x=1$ findest du den Funktionswert $f(1) = 3^1 = 3$.
- Bei der Exponentialfunktion $f(x) = 2^x$ und der Stelle $x=2$ ist $f(2)=2^2 = 4$.
- Für $f(x) = 0,5^x$ und den $x$-Wert $x=-1$ findest du den Funktionswert $f(-1) = (0,\!5)^{-1} = \dfrac{1}{\frac{1}{2}} = 2$.
- Für die Funktion $f(x) = 10^x$ erhältst du an der Stelle $x=-2$ den Funktionswert $f(-2) = 10^{-2} = \dfrac{1}{10^2} = \dfrac{1}{100} = 0,\!01$.
- Die Funktion $f(x) = 2^x$ hat an der Stelle $x=4$ den Funktionswert $f(4) = 2^4 =16$.
- Bei $f(x) = 10^x$ findest du zu $x=3$ den Funktionswert $f(3) = 10^3 = 1\,000$.
-
Analysiere die Werte.
TippsBei einer Exponentialfunktion ist jeder Funktionswert eine Potenz derselben Basis.
Bei einer Funktion der Form $f(x) = a^x$ ist $a = f(1)$.
LösungDie Funktionswerte einer Exponentialfunktion sind jeweils Potenzen einer festgelegten Basis. Du kannst von dem Funktionswert eindeutig auf die Basis zurückschließen, wenn du weißt, zu welchem $x$-Wert der Funktionswert gehört. Für jede Exponentialfunktion $f(x) = a^x$ ist der Funktionswert $f(1)$ die Basis $a$, denn $f(1) = a^1 = a$. Der Funktionswert an der Stelle $x=2$ ist das Quadrat der Basis, denn $f(2) = a^2$.
Ist z. B. $f(1) = 0,\!5$, so handelt es sich um die Funktion $f(x) = 0,\!5^x$. Ist dagegen $f(-1) = 10$, so ist $f(-1) = a^{-1} = \frac{1}{a} = 10$, also ist $a=\frac{1}{10} = 0,\!1$.
So erhältst du folgende Zuordnungen, indem du die Zahlenwerte für $x$ einsetzt:
$f(x) = 0,\!5^x$:
- $f(1) = 0,\!5^1= 0,\!5$
- $f(-1) = 0,\!5^{-1}=2$
- $f(2) = 0,\!5^2=0,\!25$
$f(x) = 3^x$:
- $f(2) = 3^2= 9$
- $f(3) = 3^3= 27$
- $f(-1) = 3^{-1}= \frac{1}{3}$
$f(x) = 10^x$:
- $f(-1)= 10^{-1}= 0,\!1$
- $f(3) = 10^3= 1\,000$
- $f(-3)= 10^{-3} = 0,\!001$
$f(x) = 0,\!1^x$:
- $f(2)= 0,\!1^2 = 0,\!01$
- $f(-1)= 0,\!1^{-1} = 10$
- $f(-2) = 0,\!1^{-2}= 100$
-
Beschrifte die Funktion.
TippsDie rechte Seite der Funktionsgleichung ist der Funktionsterm.
In dem Term $b^a$ ist $a$ der Exponent und $b$ die Basis.
Die Unbestimmte einer Funktion heißt Variable.
LösungEine Funktion beschreibt man meistens durch eine Funktionsgleichung, die angibt, wie der Funktionswert aus der Variablen berechnet wird. Die rechte Seite der Funktionsgleichung ist der Funktionsterm. Die Exponentialfunktion mit der Basis $2$ wird durch folgende Funktionsgleichung beschrieben:
$f(x) = 2^x$
Das $x$ in $f(x)$ ist die Variable der Funktion. In dem Funktionsterm $2^x$ heißt $2$ die Basis und $x$ der Exponent. Bei einer Exponentialfunktion steht die Variable also im Exponenten.
-
Erschließe die Funktionsgraphen.
TippsBestimme einen oder mehrere Funktionswerte, um die Graphen zuzuordnen. Der Funktionswert bei $x=0$ ist hierbei oft eine gute Wahl.
Die Funktion $f(x) = 2^x$ erfüllt $f(0) = 2^0 = 1$.
LösungDer Graph einer Funktion besteht aus allen Punkten der Form $P(x|f(x))$. Du kannst die Graphen zuordnen, indem du Funktionswerte berechnest und im Koordinatensystem abträgst.
Der Graph einer Exponentialfunktion der Form $f(x) = a^x$ hat zwei besonders leicht zu erkennende Punkte, die zu den Stellen $x=0$ und $x=1$ gehören. Für $x=0$ ist nämlich stets $f(0) = a^0 = 1$ und an der Stelle $x=1$ ergibt sich $f(1) = a^1 = a$. Daher gehört der Punkt $P(0|1)$ zu jeder Exponentialfunktion $f(x) = a^x$ für jedes beliebige $a \neq 0$. Der Punkt $P(1|a)$ gehört zum Graphen der Exponentialfunktion für genau einen festen Wert $a$.
Bei der Funktion $f(x) = 2 \cdot 2^x$ ist aber Vorsicht geboten: Es handelt sich nicht um eine reine Exponentialfunktion, sondern jeder Wert des Exponentialterms wird noch mit $2$ multipliziert. Daher ist bei dieser Funktion $f(0) = 2 \cdot 2^0 = 2 \cdot 1 = 2$. Der Punkt $P(0|1)$ gehört also nicht zum Funktionsgraphen der Funktion $f(x) = 2 \cdot 2^x$. Stattdessen gehört der Punkt $P(0|2)$ zum Graphen dieser Funktion.
Eine Wertetabelle hilft dir, die Funktionsgraphen zu identifizieren. Für die Funktion $f(x) = 2^{-x}$ findest du folgende exemplarische Wertepaare:
$ \begin{array}{|r|l|l|} \hline x & 2^x & f(x) \\ \hline -2 & 2^{-(-2)} & 4 \\ \hline -1 & 2^{-(-1)} & 2 \\ \hline 0 & 2^0 & 1 \\ \hline 1 & 2^{-1} & 0,\!5 \\ \hline 2 & 2^{-2} & 0,\!25 \\ \hline \vdots & \vdots & \vdots \\ \hline \end{array} $
Im Bild siehst du nur die korrekt markierten Exponentialfunktionen.

Exponentialfunktion – Definition und Erklärung

Exponentialfunktion – Definition

Parameter der Exponentialfunktion

Exponentialfunktion – Funktionsgleichung bestimmen

Exponentialfunktionen – Kenngrößen bestimmen (1)

Exponentialfunktionen – Kenngrößen bestimmen (2)

Exponentialfunktionen – Bevölkerungswachstum
Beliebteste Themen in Mathematik
- Römische Zahlen
- Prozentrechnung
- Primzahlen
- Geometrische Lagebeziehungen
- Rechteck
- Pq-Formel
- Binomische Formeln
- Trapez
- Volumen Zylinder
- Umfang Kreis
- Quadrat
- Division
- Raute
- Parallelogramm
- Polynomdivision
- Was ist eine Viertelstunde
- Prisma
- Mitternachtsformel
- Grundrechenarten Begriffe
- Dreiecksarten
- Quader
- Satz des Pythagoras
- Dreieck Grundschule
- Erste binomische Formel
- Kreis
- Standardabweichung
- Flächeninhalt
- Volumen Kugel
- Zahlen in Worten schreiben
- Meter
- Orthogonalität
- Schriftlich multiplizieren
- Brüche multiplizieren
- Potenzgesetze
- Distributivgesetz
- Flächeninhalt Dreieck
- Rationale Zahlen
- Volumen berechnen
- Brüche addieren
- Kongruenz
- Exponentialfunktion
- Scheitelpunktform
- Logarithmus
- Erwartungswert
- Skalarprodukt
- Primfaktorzerlegung
- Quadratische Ergänzung
- Zinseszins
- Geradengleichung aus zwei Punkten bestimmen
- Sinusfunktion
sehr gut
sehr verständliches und anschauliches Video