Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Was sind römische Zahlen?

Bereit für eine echte Prüfung?

Das Römische Zahlen Quiz besiegt 60% der Teilnehmer! Kannst du es schaffen?

Quiz starten
Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Bewertung

Ø 4.2 / 339 Bewertungen
Die Autor*innen
Avatar
Team Digital
Was sind römische Zahlen?
lernst du in der Primarschule 5. Klasse - 6. Klasse

Grundlagen zum Thema Was sind römische Zahlen?

Römische Zahlen – Definition

Römische Zahlen werden nicht durch die dir bekannten Zahlausdrücke beschrieben. Wie können diese umgeschrieben werden in das bei uns etablierte arabische Zahlensystem?

Die römischen Zahlen werden dargestellt durch eine Abfolge von Buchstaben.

Für diese Darstellung gibt es bestimmte Regeln, die besonders bei größeren Zahlen von Bedeutung sind.

Römische Zahlen übersetzen

Ursprünglich malten die Römer für die Zahl $1$ einen Finger oder einen Strich $\text{I}$ (römisch $1$), für die $2$ zwei Finger (Striche) $\text{II}$ (römisch $2$), ebenso für die $3$ die $\text{III}$ (römisch $3$) und für die $4$ die $\text{IIII}$ (römische $4$ ).
Die $4$ kann auch als $\text{IV}$ dargestellt werden, aber dazu kommen wir gleich.

Die Zahl $5$ entspricht der ganzen Hand mit abgespreiztem Daumen. Sie wird als $\text{V}$ geschrieben.

Die Zahl $10$ kann mit zwei Händen dargestellt werden. Sie wird als $\text{X}$ geschrieben.

römische Zahlen Finger Hand Hände

Für die größeren Zahlen verwendeten die Römer die Anfangsbuchstaben der entsprechenden Wörter:

  • $100$ heißt Centum. Hierfür wird ein $\text{C}$ verwendet.
  • $1000$ heißt Mille, wird also mit $\text{M}$ beschrieben.

Darüber hinaus steht $\text{L}$ für $50$ und $\text{D}$ für $500$.

Durch die Kombination dieser römischen Ziffern können zusammengesetzte Zahlen dargestellt werden. Das nennt man die römische Zahlschrift.

Römische Zahlen – Tabelle

Die verschiedenen römischen Zahlen können zusammenfassend in einer Tabelle dargestellt werden.

römische Ziffer arabische Ziffer
$\text{I}$ $1$
$\text{V}$ $5 $
$\text{X}$ $10 $
$\text{L}$ $50 $
$\text{C}$ $100 $
$\text{D}$ $500 $
$\text{M}$ $1000$

Die Null existiert in den römischen Zahlen nicht und kann somit auch nicht dargestellt werden.

Römische Zahlen umrechnen

Wie können nun zusammengesetzte Zahlen in die uns bekannte Form übersetzt werden?

Hierfür gibt es verschiedene Regeln für dann Fall, dass zwei Zahlzeichen – nennen wir sie Zahlzeichen $1$ und Zahlzeichen $2$nebeneinander stehen:

  • Ist das Zahlzeichen $1$ größer als das Zahlzeichen $2$, so werden die beiden Werte addiert.
    Beispiel: $\text{VI}$ entspricht $5+1=6$.
  • Ist das Zahlzeichen $1$ kleiner als das Zahlzeichen $2$, so wird das Zahlzeichen $1$ von dem Zahlzeichen $2$ subtrahiert.
    Beispiel: $\text{IX}$ entspricht $10-1=9$.

Außerdem gilt es Folgendes zu beachten:

  • Es stehen niemals mehr als drei gleiche Zahlzeichen nebeneinander. Hier gibt es eine Ausnahme, die $4$. Diese kann sowohl als $\text{IIII}$ als auch als $\text{IV}$ geschrieben werden $\left( 5-1=4 \right)$.
  • Üblicherweise steht links von einem größeren Zahlzeichen nicht mehr als ein kleineres Zahlzeichen.

Römische Zahlen umrechnen – Beispiele

Anhand von zwei Beispielen sehen wir uns nun an, wie römische Zahlen in arabische Zahlen umgerechnet bzw. umgeschrieben werden.

1. Beispiel

Die römische Zahl $\text{MCXXXI}$ soll umgerechnet werden. Dies geschieht von links nach rechts:

$\text{M}$ ist größer als $\text{C}$, also wird addiert: $1000+100=1100$.
Die drei $\text{X}$ werden addiert zu $10+10+10=30$.
Wieder wird die erste Regel angewendet und $30$ zu $1100$ addiert: $1100+30=1130$.
Auch die $\text{I}$ ist kleiner als die vorigen Zahlzeichen.
Es wird also wieder addiert: $1130+1=1131$.

2. Beispiel

Dieses Mal soll $\text{MCMXCIII}$ umgerechnet werden. Wieder werden die obigen Regeln angewendet.

Zwar ist $\text{M} \gt \text{C}$, allerdings ist auch $\text{C} \lt \text{M}$.
Also wird zunächst $1000-100=900$ gerechnet.
Dann wird $1000+900=1900$ addiert.
Als nächstes ist $\text{X} \lt \text{C}$. Dies entspricht $100-10=90$.
Nun kann wieder addiert werden: $1900+90=1990$.
Schließlich wird die $\text{III}$, also $3$, diesem Wert hinzugefügt:
$1990+3=1993$

Römische Zahlen – Datum

Auch im römischen Reich wurden Daten notiert und dafür die römischen Zahlen verwendet. Um ein Datum in römischen Zahlen zu schreiben, übersetzt du zunächst die einzelnen Zahlen in römische Zahlen und trennst diese anschließend durch Punkte.

Römische Zahlen – Übungen

Schreibe die Zahl $\text{XIV}$ als arabische Zahl.
Schreibe die Zahl $85$ als römische Zahl.
Schreibe dein Geburtsdatum in römischen Zahlen.

Zusammenfassung der römischen Zahlen

  • Für die Darstellung römischer Zahlen werden Buchstaben verwendet.
  • Römische Zahlen können in arabische Zahlen übersetzt werden und umgekehrt.
  • Jedes beliebige Datum kann in römischen Zahlen dargestellt werden. Besonders häufig werden die römischen Zahlen für Jahreszahlen verwendet.
  • Einige wichtige römische Zahlen sind in der folgenden Tabelle aufgeführt.
römische Ziffer arabische Ziffer
$\text{I}$ $1$
$\text{V}$ $5 $
$\text{X}$ $10 $
$\text{L}$ $50 $
$\text{C}$ $100 $
$\text{D}$ $500 $
$\text{M}$ $1000$

Häufig gestellte Fragen zu den römischen Zahlen

Was ist der höchste Wert, den römische Zahlen darstellen können?
Wie haben die Römer Zahlen geschrieben?
Welche Zahlzeichen kannten die Römer?
Gibt es eine römische Null?
Wie addiert bzw. subtrahiert man römische Zahlen?
Warum werden römische Zahlen noch verwendet?
Welche Zeichen wurden im antiken Rom tatsächlich verwendet?
Teste dein Wissen zum Thema Römische Zahlen!

1.215.161 Schülerinnen und Schüler haben bereits unsere Übungen absolviert. Direktes Feedback, klare Fortschritte: Finde jetzt heraus, wo du stehst!

Vorschaubild einer Übung

Transkript Was sind römische Zahlen?

Das ist ja ein seltsamer Ort für eine Paketlieferung, denkt sich Nora. Ein Friedhof? Auch an dem Paket ist etwas anders als sonst. Da ist ja eine komische Buchstabenfolge drauf. Das ist kein Wort, sondern eine Zahl, aber die ist in römischen Zahlen geschrieben. Um das Paket an den richtigen Grabstein zu liefern, müssen wir die römischen Zahlen in die uns bekannten arabischen Zahlen umschreiben. Ursprünglich malten die Römer für die Zahl 1 einen Finger oder einen Strich. Für die Zahl zwei zeichneten sie zwei Finger oder zwei Striche. Für die Zahl 3 und die 4 läuft es genauso. Die Zahl 5 entspricht der ganzen Hand, mit abgespreiztem Daumen, und wurde als V geschrieben. Die Zahl 10 kann man mit zwei Händen darstellen, also fünf plus fünf, und das wurde als X dargestellt. Für größere Zahlen verwendeten die Römer die Anfangsbuchstaben der lateinischen Wörter. 100 heißt auf lateinisch Centum, C ist also das Zeichen für die Zahl 100. Mille heißt 1000 und wurde mit M abgekürzt. Außerdem steht D für 500 und L für 50. Während ihres Gangs über den Friedhof entdeckt Nora aber ganz viele zusammengesetzte Zahlen, wie kann man diese denn in die uns bekannte Schreibweise übersetzen? Dazu können wir einige Regeln beachten: Stehen rechts neben einem Zahlzeichen kleinere oder gleiche Zahlzeichen, dann werden sie addiert. Hier steht neben dem Zahlzeichen der 5 das Zahlzeichen der 1, wir addieren diese also und erhalten 6. Ein kleineres Zahlzeichen links neben einem größeren Zahlzeichen wird vom größeren subtrahiert. Dies ist zum Beispiel hier der Fall: Links neben dem Zahlzeichen der 10 steht das Zahlzeichen der 1. Wir subtrahieren also 1 von 10 und erhalten 9. Allgemein dürfen auch nie mehr als drei gleiche Zahlzeichen nebeneinanderstehen. Die einzige Ausnahme ist dabei die 4, die man in zwei verschiedenen Schreibweisen schreiben kann. Klassischerweise steht links neben einem größeren höchstens ein kleineres Zahlzeichen. Schauen wir uns doch einmal die Zahlen auf den Grabsteinen an. Behalten wir diese Regeln im Kopf, können wir diese bestimmt auch in unsere arabischen Zahlen umwandeln. Auf diesem Grabstein haben wir die Zahl MCXXXI. M steht für 1000 und ist größer als c, welches für 100 steht. Wir addieren also 1000 und 100 und erhalten 1100. Dann haben wir drei X und daneben eine eins, also können wir die X zunächst addieren, erhalten also plus 30. Die eins steht zum Schluss, wir addieren sie also und erhalten ein Endergebnis von 1131. Auf dem nächsten Grabstein steht die Zahl MCMXCIII. Als erstes haben wir ein M, welches für 1000 steht und daneben ein C, welches für 100 steht. Wir haben also links das größere Zeichen. Aber Stopp! Danach kommt ja wieder ein M, das heißt, dass wir 1000-100 rechnen müssen. Dann können wir die beiden Werte addieren, haben also 1000 plus 900. Machen wir weiter: Wir haben ein X und direkt daneben ein C, also wieder ein kleineres Zahlzeichen links von einem größeren - wir müssen also subtrahieren: 100-10 und das sind 90. Am Ende haben wir noch 3 Einsen, also rechnen wir abschließend: 1000+900+90+3 und erhalten als Endergebnis 1993. Während Nora weiter versucht die richtige Adresse zu finden, fassen wir zusammen. Römische Zahlen haben folgende Zeichen. Du kannst dir deine Hand zur Hilfe nehmen, um dich an die Zeichen für die Zahlen bis 10 zu erinnern. Für zusammengesetzte römische Zahlen gibt es folgende Regeln: Steht rechts neben einem Zahlzeichen ein kleineres oder ein gleiches Zahlzeichen, dann werden beide addiert. Steht das kleinere Zahlzeichen dagegen links neben dem größeren Zahlzeichen wird vom größeren subtrahiert. Hat Nora die Adresse gefunden? Überraschung!

38 Kommentare
38 Kommentare
  1. Sehr zufrieden 😙🦁🥭🎏🏟📣🚸🇩🇪

    Von Laura, vor etwa einem Monat
  2. Das Viedeo war echt hilfreich!

    Von Loulou, vor 2 Monaten
  3. IV ist 4!!!!!!!!!!!!!!!!!!

    Von Timon, vor 3 Monaten
  4. das video war zwar cool aber am ende hätte ein Zomie oder so kommen sollen !!!!!

    Von Zoe, vor 3 Monaten
  5. ICH FINDE ES RICHTIG COOL AM AMFANG VOLL VIEL ANGST BEKKOMEN

    Von bella hadid , vor 4 Monaten
Mehr Kommentare

Was sind römische Zahlen? Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Was sind römische Zahlen? kannst du es wiederholen und üben.
  • Gib die Regeln für römische Zahlen wieder.

    Tipps

    Das Zahlzeichen $\text{X}$ steht für $10$ und $\text{I}$ für $1$. Mit diesen kannst du zum Beispiel folgende Zahlen kombinieren:

    • $9=\text{IX}$
    • $11=\text{XI}$
    • $12=\text{XII}$
    • $13=\text{XIII}$
    Lösung

    Die Römer hatten ein anderes Prinzip, Zahlen darzustellen. Allerdings lassen sich römische Zahlen mit einigen Regeln einfach in die uns bekannten arabischen Zahlen umschreiben. Diese Regeln lauten wie folgt:

    • Stehen rechts neben einem Zahlzeichen kleinere oder gleiche Zahlzeichen, dann werden die beiden Zahlzeichen addiert.
    Beispiel: $\text{VI}=6$
    Hier werden die Fünf, also $\text{V}$, und die Eins, also $\text{I}$, zu Sechs addiert.
    • Ein kleineres Zahlzeichen links neben einem größeren Zahlzeichen wird vom größeren subtrahiert.
    Beispiel: $\text{IX}=9$
    Hier wird die Eins, also $\text{I}$, von der Zehn, also $\text{X}$, subtrahiert.
    • Allgemein dürfen auch nie mehr als drei gleiche Zahlzeichen nebeneinander stehen. Die einzige Ausnahme ist dabei die Vier, die man in zwei verschiedenen Schreibweisen, also $\text{IIII}$ oder $\text{IV}$, schreiben kann.
    Klassischerweise steht links neben einem größeren höchstens ein kleineres Zahlzeichen.

  • Bestimme die arabischen Zahlen für die gegebenen römischen Zahlen.

    Tipps

    Stehen rechts neben einem Zahlzeichen kleinere oder gleiche Zahlzeichen, dann werden die beiden Zahlzeichen addiert.

    Ein kleineres Zahlzeichen links neben einem größeren Zahlzeichen wird vom größeren subtrahiert.

    Lösung

    Möchtest du römische Zahlen in arabische Zahlen umwandeln, musst du folgende Regeln beachten:

    • Stehen rechts neben einem Zahlzeichen kleinere oder gleiche Zahlzeichen, dann werden die beiden Zahlzeichen addiert.
    • Ein kleineres Zahlzeichen links neben einem größeren Zahlzeichen wird vom größeren subtrahiert.
    Damit erhalten wir folgende Umwandlungen:

    1. Beispiel

    $\text{VI}$

    In diesem Beispiel steht rechts neben dem Zahlzeichen $\text{V}$ (Fünf) das kleinere Zahlzeichen $\text{I}$ (Eins). Also addieren wir $5$ und $1$ wie folgt:

    $\text{VI}=6$

    2. Beispiel

    $\text{IX}$

    In diesem Beispiel steht links neben dem Zahlzeichen $\text{X}$ (Zehn) das kleinere Zahlzeichen $\text{I}$ (Eins). Also subtrahieren wir von $10$ die $1$ und erhalten:

    $\text{IX}=9$

    3. Beispiel

    $\text{MCXXXI}$

    Hier haben wir eine etwas längere Zahl. Rechts neben dem Zahlzeichen $\text{M}$ (Tausend) steht das kleinere Zahlzeichen $\text{C}$ (Hundert). Also addieren wir zunächst $1 000$ und $100$ zu $1 100$. Rechts neben $\text{C}$ steht dreimal das kleinere Zahlzeichen $\text{X}$ (Zehn), damit folgt mit $110+10+10+10=1 130$. Rechts neben $\text{X}$ (Zehn) steht wieder ein kleineres Zahlzeichen, nämlich $\text{I}$ (Eins). Wir addieren demnach noch die $1$ und erhalten insgesamt folgende Zahl:

    $\text{MCXXXI}=1 131$

    4. Beispiel

    $\text{MCMXCIII}$

    Nun haben wir als Erstes das Zahlzeichen $\text{M}$ (Tausend) und daneben das kleinere Zahlzeichen $\text{C}$ (Hundert). Aber beachte, dass rechts neben $\text{C}$ wieder das größere Zahlzeichen $\text{M}$ steht. Das heißt, dass wir $1 000-100=900$ rechnen müssen. Erst jetzt können wir die beiden Werte $1 000$ und $900$ addieren zu $1 900$. Jetzt folgt rechts das Zahlzeichen $\text{X}$ (Zehn) und direkt rechts daneben das größere Zahlzeichen $\text{C}$ (Hundert). Also haben wir wieder ein kleineres Zahlzeichen links von einem größeren, wir müssen demnach subtrahieren: $100-10=90$. Am Ende haben wir noch dreimal das Zahlzeichen $\text{I}$ (Eins). Darum addieren wir abschließend noch $3$ und erhalten:

    $\text{MCMXCIII}=1 993$

  • Leite die zugehörigen arabischen Zahlen ab.

    Tipps

    Die Zahlzeichen sind wie folgt definiert:

    $\begin{array}{c|c} \text{arabische Zahl}&\text{römische Zahl}\\ \hline 1&\text{I}\\ \hline 5&\text{V}\\ \hline 10&\text{X}\\ \hline 50&\text{L}\\ \hline 100&\text{C}\\ \hline 500&\text{D}\\ \hline 1 000&\text{M} \end{array}$

    • Steht rechts neben einem Zahlzeichen ein kleineres oder gleiches Zahlzeichen, dann werden die beiden Zahlzeichen addiert.
    Beispiel: $\text{VI}=6$
    Hier werden die Fünf, also $\text{V}$, und die Eins, also $\text{I}$, addiert zu Sechs.
    • Ein kleineres Zahlzeichen links neben einem größeren Zahlzeichen wird vom größeren subtrahiert.
    Beispiel: $\text{IX}=9$.
    Hier wird die Eins, also $\text{I}$, von der Zehn, also $\text{X}$, subtrahiert zu Neun.

    Lösung

    Um die römischen Zahlen in arabische Zahlen umzuwandeln, müssen wir die folgenden Regeln beachten:

    • Stehen rechts neben einem Zahlzeichen kleinere oder gleiche Zahlzeichen, dann werden die beiden Zahlzeichen addiert.
    • Ein kleineres Zahlzeichen links neben einem größeren Zahlzeichen wird vom größeren subtrahiert.
    Wir erhalten damit folgende Zahlen:

    $\begin{array}{rcl} \text{MDCCCLXXII}&=&1 000+500\\ &&+~100+100+100\\ &&+~50+10+10\\ &&+~1+1\\ &=&1 872 \end{array}$

    $\begin{array}{rcl} \text{MMCMXXII}&=&1 000+1 000\\ &&+~(1 000-100)\\ &&+~10+10+1+1\\ &=&2 922 \end{array}$

    $\begin{array}{rcl} \text{DCCXCIX}&=&500+100+100\\ &&+~(100-10)\\ &&+~(10-1)\\ &=&799 \end{array}$

    $\begin{array}{rcl} \text{MMMCMXCIX}&=&1 000+1 000+1 000\\ &&+~(1 000-100)\\ &&+~(100-10)\\ &&+~(10-1)\\ &=&3 999 \end{array}$

  • Vergleiche die römischen Zahlen miteinander.

    Tipps

    Stehen rechts neben einem Zahlzeichen kleinere oder gleiche Zahlzeichen, dann werden die Zahlzeichen addiert.

    Beispiele:

    $\begin{array}{rcl} \text{MM}&=&1 000+1 000\\ &=&2 000 \end{array}$

    $\begin{array}{rcl} \text{MCXI}&=&1 000+100+10+1\\ &=&1 111 \end{array}$

    Ein kleineres Zahlzeichen links neben einem größeren Zahlzeichen wird vom größeren subtrahiert.

    Beispiele:

    $\begin{array}{rcl} \text{CM}&=&1 000-100\\ &=&900 \end{array}$

    $\begin{array}{rcl} \text{CMXCIX}&=&(1 000-100)\\ &&+~(100-10)+(10-1)\\ &=&999 \end{array}$

    Sieh dir folgende Beispiele an:

    $\begin{array}{rcl} \text{DCCLXIX}&=&500+100+100\\ &&+~50+10+(10-1)\\ &=&769 \end{array}$

    $\begin{array}{rcl} \text{MMCM}&=&1 000+1 000\\ &&+~(1 000-100)\\ &=&2 900 \end{array}$

    Lösung

    Die Zahlzeichen sind wie folgt festgelegt:

    $\begin{array}{c|c} \text{arabische Zahl}&\text{römische Zahl}\\ \hline 1&\text{I}\\ \hline 5&\text{V}\\ \hline 10&\text{X}\\ \hline 50&\text{L}\\ \hline 100&\text{C}\\ \hline 500&\text{D}\\ \hline 1 000&\text{M} \end{array}$

    Die Anordnung dieser Zahlzeichen ist ausschlaggebend für die Zahl, die man darstellen möchte:

    • Stehen rechts neben einem Zahlzeichen kleinere oder gleiche Zahlzeichen, dann werden die Zahlzeichen addiert.
    • Ein kleineres Zahlzeichen links neben einem größeren Zahlzeichen wird vom größeren subtrahiert.
    Wir erhalten mit diesen Regeln folgende Umwandlungen und absteigende Reihenfolge:

    $\begin{array}{rcl} \text{MMMCMXCIX}&=&1 000+1 000\\ &&+~1 000+(1 000-100)\\ &&+~(100-10)+(10-1)\\ &=&3 999 \end{array}$


    $\begin{array}{rcl} \text{MMM}&=&1 000+1 000+1 000\\ &=&3 000 \end{array}$


    $\begin{array}{rcl} \text{MMCCCXXXIII}&=&1 000+1 000\\ &&+~100+100+100\\ &&+~10+10+10\\ &&+~1+1+1\\ &=&2 333 \end{array}$


    $\begin{array}{rcl} \text{DCCCXVIII}&=&500+100\\ &&+~100+100+10\\ &&+~5+1+1+1\\ &=&818 \end{array}$


    $\begin{array}{rcl} \text{CDXLIV}&=&(500-100)\\ &&+~(50-10)+(5-1)\\ &=&444 \end{array}$

  • Gib die jeweiligen römischen Zahlen an.

    Tipps

    Hier siehst du, wie du die Zahlen $1$ und $5$ mit deiner Hand zeigen kannst.

    Die Zahlzeichen für Hundert und Tausend stammen von den lateinischen Begriffen „centum“ und „mille“.

    Lösung

    Die Römer haben für ihre Zahlen folgende Regeln aufgestellt:

    • Stehen rechts neben einem Zahlzeichen kleinere oder gleiche Zahlzeichen, dann werden die beiden Zahlzeichen addiert.
    • Ein kleineres Zahlzeichen links neben einem größeren Zahlzeichen wird vom größeren subtrahiert.
    • Allgemein dürfen auch nie mehr als drei gleiche Zahlzeichen nebeneinander stehen. Die einzige Ausnahme ist dabei die Vier, die man in zwei verschiedenen Schreibweisen, also $\text{IIII}$ oder $\text{IV}$, schreiben kann.
    Aber bevor du diese Regeln anwenden kannst, musst du zunächst alle Zahlzeichen kennen. Diese sind:

    $\begin{array}{c|c} \text{arabische Zahl}&\text{römische Zahl}\\ \hline 1&\text{I}\\ \hline 5&\text{V}\\ \hline 10&\text{X}\\ \hline 50&\text{L}\\ \hline 100&\text{C}\\ \hline 500&\text{D}\\ \hline 1 000&\text{M} \end{array}$

  • Ermittle die gesuchten römischen Zahlen.

    Tipps

    Wandle die Summanden zunächst in arabische Zahlen um und bilde dann die Summe. Wandle diese anschließend wieder in eine römische Zahl um.

    Lösung

    Da wir aus dem täglichen Leben (und dem Unterricht) arabische Zahlen gewohnt sind, ist es am einfachsten, die römischen Zahlen zuerst in arabische umzuschreiben. Dann werden mit den arabischen Zahlen die Rechnungen durchgeführt.

    So erhalten wir dfolgende Zuordnungen:

    Summe: $~\text{MMMDCCLXV}=3 765$

    • $\text{MMDXLI}+\text{MCCXXIV}=2 541+1 224$
    • $\text{MCXI}+\text{MMDCLIV}=1 111+2 654$
    • $\text{MDLV}+\text{MMCCX}=1 555+2 210$

    Summe: $~\text{MMDLV}=2 555$

    • $\text{MCCXXXIV}+\text{MCCCXXI}=1 234+1 321$
    • $\text{DLXVII}+\text{MCMLXXXVIII}=567+1 988$

    Summe: $~\text{MDCCLXXXVI}=1 786$

    • $\text{DCLXVI}+\text{MCXX}=666+1 120$
    • $\text{DCCXLV}+\text{MXLI}=745+1 041$