30 Tage kostenlos testen:
Mehr Spass am Lernen.

Überzeugen Sie sich von der Qualität unserer Inhalte.

Wurzeln ziehen – Intervallschachtelung 08:06 min

Textversion des Videos

Transkript Wurzeln ziehen – Intervallschachtelung

Das ist Edelbert von Grasstutz. Sein größter Stolz ist sein akkurat gestutzter englischer Rasen. Sein Nachbar Kürbis-Kalle ist naja sagen wir eher ein Naturfreund. Er lässt alle seine Pflanzen, besonders die Kürbisse, einfach wachsen, wie sie wollen. Das geht Edelbert gehörig auf den Keks, denn Kalles Pflanzen wachsen über die Grundstücksgrenze und gefährden den saftigen Rasen von Edelbert. Edelbert sieht nur einen Ausweg: Er will einen geschlossenen Zaun zwischen den beiden Grundstücken bauen. Er weiß, dass alle Gärten in der Schrebergarten-Kolonie, quadratisch sind und dass sein Garten eine Fläche von genau 76 Quadratmetern umfasst. Die Seitelänge des Gartens, kennt er jedoch nicht. Das Messen mit dem Lineal ist ihm zu ungenau. Deshalb will er die Lösung lieber berechnen und hierfür muss er wurzeln ziehen mit Hilfe der Intervallschachtelung. Um die Seitenlänge eines Quadrats mit dem Flächeninhalt von 76 Quadratmetern zu bestimmen, müssen wir die Wurzel aus 76 berechnen. Die Wurzel aus 76 ist aber eine irrationale Zahl. Für viele Anwendungen genügt beim Wurzelnziehen aber eine näherungsweise Angabe. Um die Wurzel näherungsweise anzugeben, überlegen wir uns zunächst, zwischen welchen Quardatzahlen die 76 liegt. 64 ist eine Quadratzahl, denn 8 mal 8 ergibt 64. Die nächst größere Quadratzahl ist 81, denn 9 mal 9 ergibt 81. Zwischen diesen beiden Werten liegt die 76. 64 können wir schreiben als 8 zum Quadrat und entsprechend die 81 als 9 zum Quadrat. Zieht man zunächst, die Wurzel aus einer Zahl und quadriert sie dann, so erhält man wieder die Zahl selbst. Also können wir 76 schreiben, als die Wurzel aus 76 und das ganze zum Quadrat. Ziehen wir nun die Wurzel aus jedem Term, so erhalten wir: 8 ist kleiner als die Wurzel aus 76, ist kleiner als 9. Damit wissen wir, dass die Wurzel aus 76 im Intervall, zwischen 8 und 9 liegen muss. Das Ziel der Intervallschachtelung ist es, das Intervall, in welchem die Lösung liegt, immer weiter einzuschränken. Dazu wollen wir zunächst, die erste Nachkommastelle der näherungsweisen Lösung finden. Hierfür teilen wir dieses Intervall genau in der Mitte, also bei 8,5 und überprüfen, ob das Quadrat von 8,5 kleiner oder größer ist als 76. 8,5 zum Quadrat ergibt 72,25 und da 72,25 kleiner ist als 76, wissen wir, dass die Wurzel aus 76, zwischen 8,5 und 9,0 liegen muss. Mit diesem EINEN Rechenschritt, haben wir also das Lösungsintervall halbiert und haben damit die Genauigkeit der Lösung deutlich erhöht. Im nächsten Schritt, erhöhen wir die erste Nachkommastelle schrittweise um 1, und berechnen die entsprechenden Quadrate. 8,6 zum Quadrat, ergibt 73,96 was wieder kleiner als 76 ist. Wir wissen nun also, dass die Wurzel aus 76 zwischen 8,6 und 9,0 liegen muss. Erhöhen wir die erste Nachkommastelle also weiter. 8,7 zum Quadrat ergibt 75,69 auch das ist kleiner als 76, aber schonmal ziemlich nah dran. Die Wurzel aus 76, muss also zwischen 8,7 und 9,0 liegen. Die nächste zu überprüfende Zahl ist die 8,8. 8,8 zum Quadrat ergibt 77,44. Endlich, die 77,44 ist größer als 76, somit wissen wir also, dass die Wurzel aus 76, zwischen der 8,7 und der 8,8 liegen muss. Wir konnten die näherungsweise Lösung, also auf das Intervall zwischen 8,7 und 8,8, einschränken. Bei der Berechnung der zweiten Nachkommastelle, gehen wir genauso vor. Zunächst teilen wir das Intervall genau in der Mitte, also bei 8,75. 8,75 hoch 2 ergibt etwa 76,56, was größer ist als 76. Damit muss die Wurzel aus 76, also im Intervall zwischen 8,70 und 8,75 liegen. Du siehst, das Intervall wird immer kleiner und wir nähern uns immer weiter der Lösung an. Wie zuvor bei der ersten Nachkommastelle, erhöhen wir nun die zweite Nachkommastelle jeweils um 1 und berechnen die jeweiligen Quadrate. Als erstes überprüfen wir die 8,71. 8,71 hoch 2, ergibt etwa 75,86 was kleiner ist als 76. Für die Lösung bedeutet das, dass die Wurzel aus 76 zwischen 8,71 und 8,75 liegt. Überprüfen wir die 8,72. Das Quadrat ergibt etwa 76,04, ist also größer als 76, sehr schön! [nicht ironisch! Wir freuen uns wirklich!] Wir haben also das Lösungsintervall weiter eingegrenzt. Und die Wurzel aus 76, liegt also zwischen 8,71 und 8,72. Auf zur dritten Nachkommastelle, also wieder zunächst das Intervall halbieren, die Mitte liegt bei 8,715. Das Quadrat dieser Zahl ist kleiner als 76, somit können wir das Lösungsintervall einschränken auf 8,715 bis 8,720. Genau wie zuvor, erhöhen wir die entsprechende Nachkommastelle um 1, und betrachten die Quadrate. 8,716 hoch zwei, ist kleiner als 76, ebenso das Quadrat von 8,717. Bei 8,718 zum Quadrat sehen wir aber, dass das Ergebnis größer ist als 76. Die Lösung muss also im Intervall zwischen 8,717 und 8,718 liegen. Teilen wir dieses Intervall wieder in der Mitte, also bei 8,7175, und quadrieren diese Zahl, erhalten wir etwa 75,995. Das ist immer noch kleiner als 76, aber schon ganz nah dran! Wir konnten also die Lösung auf drei Nachkommastellen angeben und haben gesehen, dass die Lösung zwischen 8,7175 und 8,7180 liegen muss. Die dritte Nachkommastelle runden wir auf 8 auf, und erhalten als näherungsweises Ergebnis 8,718. Edelberts Zaun soll also 8,718 Meter lang werden. Während Edelbert nun den Zaun errichtet, fassen wir kurz das Gelernte zusammen. Oftmals sind Wurzeln aus Zahlen irrational. Du kannst sie also nicht so einfach angeben. Um die Lösung jedoch näherungsweise zu finden, kannst du das Verfahren der Intervallschachtelung nutzen. Dazu grenzt du das Lösungsintervall zunächst ein, indem du die zwei Quadratzahlen findest, zwischen denen die gesuchte Zahl liegt. Das gefundene Intervall, teilst du in der Mitte und berechnest das Quadrat dieser Zahl. Ist das Ergebnis kleiner als die gesuchte Zahl, liegt die Lösung im Intervall zwischen dieser "Mitte", und der oberen Intervallgrenze. Ist das Ergebnis größer als die gesuchte Zahl, so liegt die Lösung im Intervall zwischen der unteren Intervallgrenze, und dieser "Mitte". Im nächsten Schritt, suchst du durch Probieren diejenigen beiden benachbarten Zahlen, die quadriert kleiner, beziehungsweise größer sind als die gesuchte Zahl. Anschließend betrachtest du die nächste Nachkommastelle und wiederholst das Verfahren so lange, bis du mit der näherungsweisen Lösung zufrieden bist. Zurück zu Edelbert: Endlich hat er den Zaun bis auf den Millimeter genau errichtet! Aber, was ist das? Maulwürfe? Der benachbarte Garten auf der anderen Seite gehört ja Maulwurf-Manni und seine Maulwürfe finden englischen Rasen auch splendid, wonderful!

1 Kommentar
  1. Cooool

    Von Maria Ellenrieder, vor 6 Monaten

Wurzeln ziehen – Intervallschachtelung Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Wurzeln ziehen – Intervallschachtelung kannst du es wiederholen und üben.

  • Gib wieder, wie die Wurzelbestimmung durch Intervallschachtelung funktioniert.

    Tipps

    Eine Quadratzahl ist eine Zahl, die durch Multiplikation einer ganzen Zahl mit sich selbst entsteht.

    Um das Lösungsintervall zu halbieren, muss man seine Mitte finden.

    In diesem Verfahren rechnet man so lange Nachkommastellen aus, bis man mit der Genauigkeit der Lösung zufrieden ist.

    Lösung

    Da manche Wurzeln irrational sind, kann man sie nicht genau berechnen. Deshalb benutzt man Verfahren wie die Intervallschachtelung, um das Ergebnis näherungsweise zu bestimmen.

    Im Verfahren wird das Intervall, in dem die Lösung liegt, schrittweise eingegrenzt.

    • Im ersten Schritt werden deshalb die beiden Quadratzahlen (das sind Zahlen, die durch die Multiplikation einer ganzen Zahl mit sich selbst entstehen) gefunden, die die gesuchte Zahl eingrenzen. Da aber die Wurzel der gesuchten Zahl bestimmt werden soll, müssen auch die Wurzeln der Intervallgrenzen gezogen werden.
    Jeder Schritt grenzt das Lösungsintervall weiter ein.

    • Im zweiten Schritt wird das Intervall halbiert, indem man die Mitte dieses Intervalls bestimmt. Dann findet man heraus, ob die Lösung im Intervall oberhalb oder unterhalb dieser Mitte liegt.
    Hat man das Intervall halbiert, gibt es nicht mehr viele Möglichkeiten für die Lage der Lösung innerhalb dieses Intervalls.

    • Deshalb bestimmt man im dritten Schritt durch Probieren die genauen Grenzen des Intervalls. Dazu quadriert man nacheinander die verbleibenden Zahlen des Intervalls und vergleicht sie mit der gesuchten Zahl. Hat man die beiden Zahlen gefunden, die jeweils kleiner und größer als die gesuchte Zahl sind, ist das Verfahren für diese Nachkommastelle beendet.
    Möchte man eine sehr genaue Lösung finden, kann man das Verfahren beliebig oft durchführen. Dazu wendet man die drei Schritte von oben immer wieder für die nächste Nachkommastelle an.

  • Gib an, welche Aussagen wahr sind.

    Tipps

    Rationale Zahlen werden auch Bruchzahlen genannt. Man kann sie also darstellen, indem man eine Zahl durch eine andere Zahl teilt.

    Rundet man, um eine Lösung zu erhalten, so ist diese Lösung nicht genau.

    Man bestimmt den Flächeninhalt eines Quadrats, indem man die Seitenlänge quadriert.

    Natürliche Zahlen sind die Zahlen, die beim Zählen verwendet werden:

    • $1, 2, 3, 4, ...$
    Das sind alle positiven ganzen Zahlen.

    Lösung

    Nicht alle Quadratwurzeln sind natürliche Zahlen. Das ist wahr, da Quadratwurzeln auch irrationale Zahlen sein können.

    Wurzeln sind immer rationale Zahlen. Das ist falsch, da die Lösung einer Wurzel auch irrational sein kann (siehe $\sqrt{76}$).

    Mit der Intervallschachtelung bestimmt man eine genaue Lösung. Das ist falsch, da mit der Intervallschachtelung eine ungefähre Lösung bestimmt wird.

    Man bestimmt die Seitenlänge eines Quadrats, indem man die Wurzel der Fläche bestimmt. Das ist wahr, denn bei einem Quadrat gilt: $A=a^2$, wobei $A$ für den Flächeninhalt und $a$ für die Seitenlänge steht. Daraus folgt $a=\sqrt{A}$.

    Die Wurzel einer Quadratzahl ist eine natürliche Zahl. Das ist wahr, denn eine Quadratzahl ist das Quadrat einer natürlichen Zahl. Demnach muss die Wurzel einer Quadratzahl eine natürliche Zahl sein.

  • Berechne die Wurzel von $76$ näherungsweise.

    Tipps

    Hier gilt: Wenn $a^2<b^2$ ist, dann muss $a<b$ sein.

    Falls dich die Intervalle verwirren, stelle sie dir auf dem Zahlenstrahl vor.

    Lösung

    Das Intervall, in dem die Lösung liegt, wird schrittweise eingegrenzt.

    Im ersten Schritt werden die beiden Quadratzahlen gefunden, die die gesuchte Zahl eingrenzen.

    Hier sind das $64$ und $81$.

    Da aber die Wurzel der gesuchten Zahl bestimmt werden soll, müssen auch die Wurzeln der Intervallgrenzen gezogen werden, also:

    • $\sqrt{64}=8$ und
    • $\sqrt{81}=9$.
    Das bedeutet, dass die Wurzel aus $76$ zwischen den Zahlen $8$ und $9$ liegt.

    Jeder weitere Schritt grenzt das Lösungsintervall weiter ein.

    Im zweiten Schritt wird das Intervall halbiert, indem man die Mitte dieses Intervalls bestimmt. Da man diese Mitte allerdings mit $76$ vergleichen muss, quadriert man sie.

    ${8,5}^2=72,25$

    Dann findet man heraus, ob die Lösung im Intervall oberhalb oder unterhalb dieser Mitte liegt.

    Dazu vergleicht man sie mit $76$ und überlegt, was das für das Lösungsintervall bedeutet.

    Da $72,25$ kleiner ist als $76$, muss $\sqrt{76}$ zwischen $8,5$ und $9$ liegen.

    Jetzt gibt es nicht mehr viele Möglichkeiten, wo die Lösung liegen kann. Deshalb bestimmt man im dritten Schritt durch Probieren die genauen Grenzen des Intervalls. Dazu erhöht man die Nachkommastelle um $1$, quadriert diese Zahlen und vergleicht sie mit der $76$.

    $8,6^2=73,96 < 76$

    $8,7^2=75,69 < 76$

    $8,8^2=77,44 >76$

    Da $76$ größer ist als $75,69$ und kleiner als $77,44$, muss die Lösung zwischen $8,7$ und $8,8$ liegen.

    Damit ist das Verfahren für diese Nachkommastelle beendet.

    Da die Lösung aber für zwei Nachkommastellen bestimmt werden soll, muss das Verfahren noch für die nächste Nachkommastelle angewandt werden.

    Das gerade bestimmte Intervall wird in der Mitte geteilt und das Quadrat dieser Zahl berechnet.

    $8,75^2=76,56>76$.

    Also gilt:

    $8,70 < \sqrt{76} < 8,75$.

    Danach wird die zweite Nachkommastelle schrittweise um $1$ erhöht und die Quadrate bestimmt.

    $8,71^2=75,86 < 76$

    $8,72^2=76,04 > 76$

    Die Lösung muss also im Intervall zwischen $8,71$ und $8,72$ liegen.

    Jetzt wurde das Intervall auf zwei Nachkommastellen genau gefunden. Um herauszufinden welche dieser Zahlen näher an der Lösung liegt, wird die Mitte dieses Intervalls bestimmt.

    Man erhält $8,715$. Das Quadrat dieser Zahl ergibt:

    $8,715^2=75,95<76$.

    Die Lösung muss also zwischen $8,715$ und $8,720$ liegen. Hier wird aufgerundet und die Lösung mit zwei Nachkommastellen mit $8,72$ angegeben.

  • Bestimme den Flächeninhalt von Edelberts zweitem Grundstück

    Tipps

    Der Flächeninhalt $A$ eines Rechtecks mit Seitenlängen $a$ und $b$ ergibt sich durch:

    $A = a\cdot b $.

    Lösung

    Die eingrenzenden Quadratzahlen von $32$ sind:

    • $25<32<36$.
    Die Wurzel aus $32$ liegt also zwischen den Zahlen $5$ und $6$. Für die erste Nachkommastelle berechnet man die Mitte und quadiert diese:
    • $5,5^2=30,25$.
    Da $30,25<32$ gilt, muss $\sqrt{32}$ zwischen $5,5$ und $6$ liegen. Anschließend berechnet man
    • $5,6^2=31,36 < 32$,
    • $5,7^2=32,49 > 32$.
    Die Lösung liegt also zwischen $5,6$ und $5,7$. Auf eine Nachkommastelle gerundet ergibt sich
    • $\sqrt{32}\approx 5,7$.
    Die eingrenzenden Quadratzahlen von $2$ sind:
    • $1<2<4$.
    Die Wurzel aus $2$ liegt also zwischen den Zahlen $1$ und $2$. Für die erste Nachkommastelle bestimmt man die Mitte dieses Intervalls und quadriert diese:
    • $1,5^2=2,25$.
    Da $2,25>2$ gilt, liegt $\sqrt{2}$ zwischen $1$ und $1,5$. Nun rechnet man schrittweise wie folgt:
    • $1,1^2=1,21 < 2$
    • $1,2^2=1,44 < 2$
    • $1,3^2=1,69 < 2$
    • $1,4^2=1,96 < 2$
    • $1,5^2=2,25 > 2$.
    Man erkennt, dass die Lösung zwischen $1,4$ und $1,5$ liegt. Man rundet nun ab und erhält: $1,4$.

    Der Flächeninhalt $A$ eines Rechtecks mit Seitenlängen $a$ und $b$ ergibt sich durch:

    • $A = a\cdot b $.
    Mit den berechneten Seitenlängen erhält man also folgenden Flächeninhalt:
    • $A= \sqrt{2}\cdot\sqrt{32}\approx 1,4 \cdot 5,7 =7,98$.
    Mit dem Wurzelgesetz $\sqrt{a} \cdot \sqrt{b} = \sqrt{a \cdot b}$ hätte man die Lösung auch direkt bestimmen können zu:
    • $ \sqrt{2} \cdot \sqrt{32}= \sqrt{64} = 8$.

  • Bestimme die Wurzel von $38$ näherungsweise.

    Tipps

    Hier gilt: Wenn $a^2<38<b^2$ ist, dann muss $a<\sqrt{38}<b$ sein.

    Die Lösung soll auf zwei Nachkommastellen genau angegeben werden. Also muss auf die Zahl mit zwei Nachkommastellen gerundet werden.

    Dabei gehst du wie folgt vor:

    • Steht an der dritten Nachkommastelle eine Zahl von $1$ bis $4$, wird die zweite Nachkommastelle abgerundet.
    • Steht an der dritten Nachkommastelle eine Zahl von $5$ bis $9$, wird die zweite Nachkommastelle aufgerundet.

    Lösung

    Das Intervall, in dem die Lösung liegt, wird schrittweise eingegrenzt.

    Im ersten Schritt werden die beiden Quadratzahlen gefunden, die die gesuchte Zahl eingrenzen.

    Hier sind das $36$ und $49$.

    Da aber die Wurzel der gesuchten Zahl bestimmt werden soll, müssen auch die Wurzeln der Intervallgrenzen gezogen werden. Es folgt:

    • $\sqrt{36}=6$
    • $\sqrt{49}=7$.
    Das bedeutet, dass die Wurzel aus $38$ zwischen den Zahlen $6$ und $7$ liegt.

    Jeder weitere Schritt grenzt das Lösungsintervall weiter ein.

    Im zweiten Schritt wird das Intervall halbiert, indem man die Mitte dieses Intervalls bestimmt. Da man die Mitte allerdings mit $38$ vergleichen muss, quadriert man sie.

    ${6,5}^2=42,25$

    Dann findet man heraus, ob die Lösung im Intervall oberhalb oder unterhalb dieser Mitte liegt.

    Dazu vergleicht man sie mit $38$ und überlegt, was das für das Lösungsintervall bedeutet.

    Da $42,25$ größer ist als $38$, muss $\sqrt{38}$ zwischen $6$ und $6,5$ liegen.

    Jetzt gibt es nicht mehr viele Möglichkeiten, wo die Lösung liegen kann. Deshalb bestimmt man im dritten Schritt durch Probieren die genauen Grenzen des Intervalls. Dazu quadriert man nacheinander die verbleibenden Zahlen des Intervalls und vergleicht sie mit der $38$.

    $6,1^2=37,21 < 38$

    $6,2^2=38,44 > 38$

    Da $38$ größer ist als $37,21$ und kleiner als $38,44$, muss die Lösung zwischen $6,1$ und $6,2$ liegen.

    Damit ist das Verfahren für diese Nachkommastelle beendet.

    Da die Lösung aber für zwei Nachkommastellen bestimmt werden soll, muss das Verfahren noch einmal angewandt werden.

    Das gerade bestimmte Intervall wird in der Mitte geteilt und das Quadrat dieser Zahl berechnet:

    $6,15^2=37,82<38$.

    Also gilt:

    $6,15 < \sqrt{38} < 6,2$.

    Danach wird die zweite Nachkommastelle schrittweise um $1$ erhöht und die Quadrate bestimmt.

    $6,16^2=37,95 < 38$

    $6,17^2=38,07 > 38$

    Die Lösung muss also im Intervall zwischen $6,16$ und $6,17$ liegen.

    Jetzt wurde das Intervall auf zwei Nachkommastellen genau gefunden. Um herauszufinden, welche dieser Zahlen näher an der Lösung liegt, wird die Mitte dieses Intervalls bestimmt.

    Man erhält $6,165$. Das Quadrat dieser Zahl ergibt:

    $6,165^2=38,01>38$.

    Die Lösung muss also zwischen $6,160$ und $6,165$ liegen. Da die Lösung auf zwei Nachkommastellen genau sein soll und $6,165$ zu viele Nachkommastellen hat, wird abgerundet und $6,16$ angegeben.

  • Gib an, in welchen Intervallen die Wurzeln liegen.

    Tipps

    Berechne die Wurzeln mit der Intervallschachtelung und ordne sie so den Intervallen zu.

    Ein Zahlenstrahl macht Intervalle übersichtlicher.

    Lösung

    Die Berechnung der Wurzeln mit der Intervallschachtelung ergibt:

    A: $\sqrt{26} \approx 5,099$

    • $\sqrt{26}$ liegt also in den Intervallen $(5;~6)$ und $(5,09;~5,10)$.
    B: $\sqrt{14} \approx 3,742$
    • $\sqrt{14}$ liegt also in den Intervallen $(3;~4)$ und $(3,74;~3,75)$.
    C:$\sqrt{19} \approx 4,359$
    • $\sqrt{19}$ liegt also in den Intervallen $(4;~5)$ und $[4,35;~4,36]$.