Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Plattenkondensator – Kapazität

Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Bewertung

Ø 4.7 / 14 Bewertungen
Die Autor*innen
Avatar
Jakob Köbner
Plattenkondensator – Kapazität
lernst du in der Sekundarstufe 5. Klasse - 6. Klasse - 7. Klasse

Plattenkondensator – Kapazität Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Plattenkondensator – Kapazität kannst du es wiederholen und üben.
  • Gib an, was man unter der Kapazität $C$ eines Kondensators versteht.

    Tipps

    Welche physikalische Größe besitzt das Formelzeichen $Q$?

    Welche physikalische Größe besitzt das Formelzeichen $U$?

    Lösung

    Kondensatoren sind Bauelemente, die elektrische Ladungen bzw. elektrische Energie speichern können. Die einfachste Form eines Kondensators besteht aus zwei gegenüberliegenden Metallplatten. Dazwischen befindet sich ein Dielektrikum, welches keine elektrische Verbindung zwischen den Metallplatten zulässt. Das Dielektrikum ist als Isolator zu verstehen.

    Die wichtigste physikalische Größe eines Kondensators ist dessen Kapazität. Diese Kapazität $C$ eines Plattenkondensators ist eine Konstante, die angibt, wie groß die Ladung $Q$ ist, die bei der angelegten Spannung $U$ gespeichert werden kann.

    Je größer die Kapazität ist, desto mehr Ladung und Energie kann ein Kondensator speichern.

  • Gib die Namen der drei Arten eines Kondensators an.

    Tipps

    Die Leidener Flasche ist die älteste Bauform eines Kondensators.

    Wie sieht ein Zylinder aus?

    Lösung

    Im Bild oben siehst du drei verschiedene Arten von Kondensatoren.

    Ganz links siehst du die älteste Form eines Kondensators, die sogenannte Leidener Flasche. Auf der Innen- und Außenseite eines Glasgefäßes (beispielsweise einer Flasche) sind hierbei Metallbeläge angebracht. Das Glas wiederum stellt den Isolator dar.

    In der Mitte des Bildes ist ein Zylinder zu erkennen, welcher ebenfalls als Kondensator dient. Ein solcher Zylinderkondensator ist ein Kondensator, der aus zwei elektrisch leitenden Zylindermänteln besteht, zwischen welchen sich ein Dielektrikum (Isolator) befindet.

    Der Kondensator rechts besteht auch mehreren Schichten von Platten. Diese Vielschicht-Kondensatoren werden wegen ihrer kompakten Form vorwiegend in der Mikroelektronik eingesetzt.

  • Gib die Namen der physikalischen Größen zu den gegebenen Formelzeichen an.

    Tipps

    $[U]=1~V$

    $[C]=1~F=1~\frac{C}{V}$

    Lösung

    Die Einheit der Kapazität $C$ wurde nach Michael Faraday benannt.

    Ein Kondensator mit einer Kapazität $C$ von einem Farad $F$ kann durch das Aufladen auf eine Spannung $U$ von einem Volt $V$ eine Ladungsmenge $Q$ von einem Coulomb $C$ speichern. Es gilt: $C=\frac{Q}{U}$.

    Die elektrische Energie $W$ hingegen, lässt sich über die Formel $W=\frac{1}{2}\cdot C \cdot U^2$ berechnen.

  • Gib die passenden Einheiten zu den physikalischen Größen an.

    Tipps

    $1~F=1~\frac{C}{V}$

    $1~C=1~A\cdot s$

    Für einen Plattenkondensator gilt: $C=\epsilon \cdot \frac{A}{d}$.

    Lösung

    Die Einheit der Kapazität $C$ wurde nach einem prominenten Physiker benannt, welcher sich intensiv mit Kondensatoren beschäftigte: Michael Faraday.

    Die Einheit Farad $F$ ist somit die SI-Einheit für die elektrische Kapazität $C$ und lässt sich für einen Plattenkondensator wie folgt berechnen: $C=\epsilon \cdot \frac{A}{d}$.

    $A$ ist dabei die Fläche des Plattenkondensators, welche in Quadratmeter $m^2$ angegeben wird.

    $d$ wiederum ist der Abstand zwischen den beiden Platten, welcher in Meter $m$ angegeben wird.

    Neu ist für dich sicherlich die Permittivität $\epsilon$. Diese Größe gibt die Durchlässigkeit eines Materials für elektrische Felder an und wird in Farad pro Meter $\frac{F}{m}=\frac{A\cdot s}{V\cdot m}$ angegeben.

  • Gib die Einheit der Kapazität $C$ an.

    Tipps

    Die Einheit der Kapazität wurde nach einem prominenten Physiker, welcher sich intensiv mit Kondensatoren beschäftigte, benannt.

    $[C]=\frac{C}{V}=\frac{A\cdot s}{V}$

    Lösung

    Die Einheit der Kapazität $C$ wurde nach einem prominenten Physiker benannt, welcher sich intensiv mit Kondensatoren beschäftigte: Michael Faraday.

    Die Einheit Farad ist somit die SI-Einheit für die elektrische Kapazität $C$. Doch was genau ist ein Farad?

    Ein Kondensator mit einer Kapazität von einem Farad $F$ kann durch das Aufladen auf eine Spannung von einem Volt $V$ eine Ladung von einem Coulomb $C$ speichern.

  • Gib die Kapazität eines Kondensators an, welcher bei einer Ladung $Q$ von $22~mC$ eine Spannung $U$ von $0,42~V$ benötigt.

    Tipps

    Schreibe dir die gegebenen und gesuchten Größen auf.

    $C=\frac{Q}{U}$

    Hast du das Ergebnis richtig gerundet?

    Lösung

    Um diese Aufgabe lösen zu können, schreiben wir zuerst die gegeben und gesuchten Größen auf, halten die Formel zur Berechnung fest, setzen die Zahlenwerte ein und formulieren einen Antwortsatz.

    Gegeben: $Q=22~mC$; $U=0,42~V$

    Gesucht: $C$ in $mF$

    Formel: $C=\frac{Q}{U}$

    Berechnung: $C=\frac{Q}{U}=\frac{22~mC}{0,42~V}=52,4~m\frac{C}{V}=52,4~mF$

    Antwortsatz: Die Kapazität beträgt $52,4 ~mF$.

30 Tage kostenlos testen
Mit Spass Noten verbessern
und vollen Zugriff erhalten auf

8'095

sofaheld-Level

6'601

vorgefertigte
Vokabeln

7'452

Lernvideos

35'592

Übungen

33'145

Arbeitsblätter

24h

Hilfe von Lehrer*
innen

laufender Yeti

Inhalte für alle Fächer und Schulstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.

30 Tage kostenlos testen

Testphase jederzeit online beenden