30 Tage kostenlos testen

Überzeugen Sie sich von der Qualität unserer Inhalte.

Lernpakete anzeigen
Lernpakete anzeigen

Sinussatz und Cosinussatz

Mit Sinussatz und Cosinussatz kannst du Winkel oder Seitenlängen in einem allgemeinen Dreieck berechnen.

Inhaltsverzeichnis zum Thema

Dreiecke

Hier siehst du ein allgemeines Dreieck:

Topic_Dreieck.jpg

Die Eckpunkte sind mit Großbuchstaben gegen den Uhrzeigersinn bezeichnet, die gegenüberliegenden Seiten werden mit dem entsprechenden Kleinbuchstaben gekennzeichnet und die drei Winkel sind zu erkennen an den griechischen Buchstaben $\alpha$ (alpha) für a, $\beta$ (beta) für b und $\gamma$ (gamma) für $c$.

Es gibt spezielle Dreiecke:

  • rechtwinklige Dreiecke - das Dreieck hat einen rechten Winkel ($90^\circ$)
  • gleichschenklige Dreiecke - zwei Seiten des Dreiecks sind gleich lang
  • gleichseitige Dreiecke - alle drei Seiten des Dreiecks sind gleich lang

In diesen Dreiecken kannst du mit Hilfe des Satzes von Pythagoras oder den trigonometrischen Funktionen in der TrigonometrieSinus ($\sin$), Cosinus ($\cos$, auch als Kosinus bezeichnet) und Tangens ($\tan$) – fehlende Seiten oder Winkel berechnen. Dabei musst du sowohl in gleichschenkligen als auch in gleichseitigen Dreiecken jeweils mit Hilfslinien einzeichnen, so dass rechtwinklige Teildreiecke entstehen.

Trigonometrische Funktionen: Sinus, Cosinus und Tangens

In rechtwinkligen Dreiecken sind die Seitenbezeichnungen folgendermaßen:

  • die Gegenkathete von $\alpha$ ist die Kathete, die dem spitzen Winkel $\alpha$ gegenüber liegt
  • die Ankathete von $\alpha$ ist die Kathete, die dem Winkel $\alpha$ anliegt
  • die Hypotenuse ist stets die längste Seite im Dreieck und liegt dem rechten Winkel gegenüber

Topic_rechtwinkliges_Dreieck.jpg

Die trigonometrischen Funktionen in einem rechtwinkligen Dreieck sind wie folgt definiert:

$\sin(\alpha)=\frac{\text{Gegenkathete von }\alpha}{\text{Hypotenuse}}$

$\cos(\alpha)=\frac{\text{Ankathete von }\alpha}{\text{Hypotenuse}}$

$\tan(\alpha)=\frac{\text{Gegenkathete von }\alpha}{\text{Ankathete von }\alpha}$

In allgemeinen Dreiecken sind weder diese Definitionen, noch der Satz des Pythagoras direkt anwendbar.

Sinussatz und Cosinussatz

Im Gegensatz zu den trigonometrischen Funktionen sind der Sinus- und der Cosinussatz in jedem beliebigen Dreieck anwendbar.

Der Sinussatz beschreibt das Verhältnis der Winkel eines Dreiecks und den gegenüberliegenden Seiten.

Mit dem Cosinussatz können fehlende Seitenlängen berechnet werden.