30 Tage kostenlos testen:
Mehr Spass am Lernen.

Überzeugen Sie sich von der Qualität unserer Inhalte.

Wurzel aus 2 – Irrationalität 05:25 min

Textversion des Videos

Transkript Wurzel aus 2 – Irrationalität

Die Welt erzittert vor Boris Brecher. Er haut alles zu Bruch. Er bricht Herzen, er bricht das Gesetz und er bricht die Wurzel aus 2! Was? Wieso kann er keinen Bruch aus Wurzel 2 machen? Na klar! Das liegt daran, dass die Wurzel aus 2 irrational ist! Irrationale Zahlen sind alle die reellen Zahlen, die nicht gleichzeitig auch rationale Zahlen sind.Das heißt, irrationale Zahlen kann man nicht als Bruch aus zwei ganzen Zahlen schreiben. Aber wie will man herausfinden, ob man eine Zahl als Bruch schreiben kann oder nicht? Dazu benutzen wir einen Widerspruchsbeweis! Um unsere Aussage zu beweisen, benutzen wir einen schlauen Trick: Wir nehmen an, das Gegenteil unserer Aussage sei wahr. Man nennt dieses Gegenteil dann "verneinte Aussage", oder "Gegenannahme". Dabei müssen wir darauf achten, wirklich das logisch richtige Gegenteil zu formulieren. Dann versuchen wir, aus der Gegenannahme einen Widerspruch zu folgern. Und wenn wir mit logisch richtigen Schritten bei einem Widerspruch landen, muss der Ausgangspunkt falsch gewesen sein! Da wir von der Gegenannahme ausgegangen sind, ist die also falsch! Und das bedeutet dann, dass die eigentliche Aussage richtig sein muss. Also: zu beweisende Aussage formulieren, logisch verneinen zur Gegenannahme, auf korrekte Art zu einem Widerspruch gelangen – fertig: Die zu beweisende Aussage muss wahr sein. Dann sind wir glücklich und sagen "q.e.d." – "was zu beweisen war". Schauen wir uns dieses Verfahren doch mal mit der Irrationalität der Wurzel aus 2 an! Wir wollen beweisen, dass die Wurzel aus 2 irrational ist. Das heißt, unsere Aussage lautet: "die Wurzel aus 2 ist irrational". Die Gegenannahme ist dann "die Wurzel aus 2 ist rational", sie lässt sich also als vollständig gekürzten Bruch schreiben. Sagen wir, "Wurzel 2 gleich p durch q". Wobei p und q keine gemeinsamen Teiler haben – der Bruch soll ja vollständig gekürzt sein. So weit, so gut. Dann stellen wir doch mal die Gleichung um, damit die Wurzel verschwindet. Wir quadrieren also auf beiden Seiten. Und den Bruch lösen wir auch auf, also multiplizieren wir beide Seiten mit q Quadrat. Stellen wir doch mal nach p Quadrat um. Hm.. was wissen wir jetzt über p Quadrat? p Quadrat muss gerade sein, da es gleich 2 mal irgendeine andere Zahl ist – nämlich 2 mal q Quadrat! Aber wenn p Quadrat gerade ist, muss auch p gerade sein! Denn in p Quadrat tauchen alle Faktoren von p mindestens zweimal auf – klar, einmal für jedes p. Naja, aber wenn p auch gerade ist, dann können wir es doch als 2 mal eine andere Zahl schreiben "p gleich 2 mal r" etwa. Also konnten wir schonmal folgern, dass "p gleich 2 mal eine Zahl r" sein muss. Und was können wir daraus schließen? Wenn wir für p "2 mal r" einsetzen, dann ist "4 r Quadrat" gleich "2 q Quadrat". Da können wir einmal durch 2 teilen und die Gleichung umdrehen. Oh! Aber jetzt steht da "q Quadrat gleich 2 mal irgendeine Zahl". Und wie gerade bei p Quadrat bedeutet das, dass q gerade sein muss – zum Beispiel könnte q gleich 2 mal s sein. Siehst du schon den Widerspruch? p und q sind beide gerade. Das kann aber nicht sein, denn wir haben ja angenommen, dass der Bruch "p durch q" vollständig gekürzt ist. Dann können p und q aber nicht beide durch 2 teilbar sein, sonst hätten wir ja noch mit 2 kürzen können. Also kann "p durch q" nicht als vollständig gekürzter Bruch vorgelegen haben. Und damit kann Wurzel 2 keine rationale Zahl sein – denn alle rationalen Zahlen lassen sich als vollständig gekürzte Brüche angeben. Wir haben es also geschafft! Die Wurzel aus 2 kann keine rationale Zahl sein – denn dann gibt es einen Widerspruch! Und damit ist Wurzel 2 irrational! q.e.d. Fassen wir das alles mal zusammen. Wir haben gezeigt, dass die Wurzel aus 2 eine irrationale Zahl ist. Das heißt, dass man Wurzel 2 nicht als Bruch schreiben kann. Ihre Dezimalschreibweise bricht also niemals ab, ist aber auch nicht periodisch! Eine andere berühmte irrationale Zahl ist Pi – oder auch alle anderen Wurzeln aus ganzen Zahlen, die keine Quadratzahlen sind. So wie Wurzel 3, Wurzel 5, und so weiter. Um ganz sicher zu sein, dass Wurzel 2 keine rationale Zahl sein kann, haben wir einen Widerspruchsbeweis benutzt. Dabei sind wir von der Gegenannahme "die Wurzel aus 2 ist rational" ausgegangen und haben damit einen Widerspruch gefunden. Ihr fragt euch, was aus Boris Brecher geworden ist? Der hat sich ein schwächeres Opfer gesucht. Wie irrational!

1 Kommentar
  1. Vielen Vielen Dank an Euch.Ich halte morgen ein Referat über die Wurzel 2 und ihr habt mir sehr gut weiter geholfen !! Danke.

    Von Han78, vor 9 Monaten

Wurzel aus 2 – Irrationalität Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Wurzel aus 2 – Irrationalität kannst du es wiederholen und üben.

  • Gib wieder, warum Widerspruchsbeweise funktionieren.

    Tipps

    Der Widerspruchsbeweis basiert darauf, dass das logische Gegenteil einer Aussage durch einen Widerspruch widerlegt wird, wodurch die ursprüngliche Aussage bewiesen ist.

    Ein Widerspruch ist dann erzeugt, wenn aus der Gegenannahme logisch eine Aussage hergeleitet wird, die nicht gleichzeitig mit der Gegenannahme wahr sein kann.

    Lösung

    Die Reihenfolge der Schritte zu einem erfolgreichen Widerspruchsbeweis ist immer gleich.

    Sich klar zu machen, was überhaupt zu tun ist, ist immer der erste Schritt beim Lösen eines Problems. In unserem Fall heißt das:

    • Zuerst formuliert man die zu beweisende Aussage.
    Da wir die Gegenaussage widerlegen wollen, müssen wir diese jetzt aus der ursprünglichen Aussage herleiten:

    • Zu dieser Aussage formuliert man dann die Gegenaussage, also das logische Gegenteil der ursprünglichen Aussage.
    Diese Gegenaussage wollen wir jetzt auf einen Widerspruch führen.

    • Ausgehend von der Annahme, dass die Gegenaussage wahr ist, wird durch Rechnungen ein Widerspruch erzeugt.
    Hier liegt der schwierigste Teil des Widerspruchsbeweises, da wir vorher nicht wissen, auf welchem Weg wir zum Widerspruch gelangen. Es kann also sein, dass wir erst einmal einige Rechnungen ausprobieren müssen. In jedem Fall sind wir dann bei einem Widerspruch angelangt.

    • Wenn ein Widerspruch gefunden werden kann, bedeutet das, dass die Gegenannahme falsch ist.
    Wir folgern aus der Gegenaussage logisch eine Behauptung, die aber in keinem Fall gleichzeitig mit der Gegenaussage wahr sein kann. Damit muss aber die Gegenannahme falsch sein.

    • Wenn die Gegenaussage falsch ist, muss die ursprüngliche Aussage richtig sein.
    Haben wir bewiesen, dass die Gegenannahme falsch ist, muss ihr Gegenteil richtig sein. Das ist aber die ursprüngliche Aussage.

    Damit haben wir es schon geschafft. Als Zeichen dafür, dass ein Beweis abgeschlossen ist, verwenden Mathematiker einen bestimmten Schriftzug:

    • Damit ist also die Richtigkeit der ursprünglichen Aussage bewiesen. Das war das Ziel, und deshalb schreibt man: q.e.d.
    Das ist die lateinische Abkürzung für „quod erat demonstrandum“, was soviel heißt wie „Was zu beweisen war“.

  • Bestimme die korrekten Aussagen.

    Tipps

    Die Rechengesetze der Mathematik darf man nicht brechen.

    Eine rationale Zahl kannst du immer als Bruch schreiben.

    Alle Zahlen auf dem Zahlenstrahl sind reelle Zahlen.

    Lösung

    Diese Aussagen sind falsch:

    • Ein Widerspruch wird durch falsch angewandte Rechengesetze erzeugt.
    Die Rechengesetze der Mathematik müssen immer korrekt angewandt werden und dürfen nicht gebrochen werden.
    • Eine reelle Zahl kann niemals irrational sein.
    Der Zahlenraum der reellen Zahlen umfasst alle Zahlen des Zahlenstrahls, also auch irrationale Zahlen.

    $~$

    Diese Aussagen sind wahr:

    • Bei Widerspruchsbeweisen muss man eine Gegenannahme formulieren.
    Bei Widerspruchsbeweisen formuliert man zunächst eine Aussage, die dann logisch verneint werden muss.
    • Irrationale Zahlen kann man nicht als Bruch schreiben.
    Irrationale Zahlen sind Zahlen, die nicht als Bruch geschrieben werden können.
    • Irrationale Zahlen sind auch reelle Zahlen
    Der Zahlenraum der reellen Zahlen umfasst alle Zahlen des Zahlenstrahls, also auch irrationale Zahlen.
  • Schildere den Widerspruchsbeweis zur Irrationalität von $\sqrt{2}$.

    Tipps

    $\sqrt{2} \in \mathbb{R} \backslash \mathbb{Q}$ bedeutet, dass $\sqrt{2}$ im Zahlenraum der reellen Zahlen $\mathbb{R}$ ohne die rationalen Zahlen $ \mathbb{Q}$ liegt.

    Um eine Wurzel in einer Gleichung verschwinden zu lassen, kannst du beide Seiten quadrieren.

    Multipliziert man eine ganze Zahl mit zwei, ist das Ergebnis immer eine gerade Zahl.

    Ein Widerspruch tritt auf, wenn du durch korrekte Rechnungen ein Ergebnis erhältst, das logisch keinen Sinn ergibt.

    Lösung

    Wir beginnen mit der zu beweisenden Aussage. Diese lautet:

    $\sqrt{2} \in \mathbb{R} \backslash \mathbb{Q}$.

    Das bedeutet, dass die Zahl $\sqrt{2}$ irrational ist.

    Das logische Gegenteil davon lautet:

    $\sqrt{2} \in \mathbb{Q}$.

    In Worten bedeutet das: $\sqrt{2}$ ist rational.

    Eine rationale Zahl können wir als vollständig gekürzten Bruch schreiben, also:

    $\sqrt{2} = \frac{p}{q}$, wobei $\frac{p}{q}$ vollständig gekürzt sein muss.

    Diese Gleichung stellen wir um:

    $\sqrt{2} = \frac{p}{q} \Leftrightarrow$

    $2 = \frac{p^2}{q^2} \Leftrightarrow$

    $p^2=2q^2$

    Die Gleichung haben wir hier quadriert und mit $q^2$ multipliziert.

    Wir wissen jetzt, das $p^2$ gerade sein muss. Das erkennen wir daran, dass $p^2$ gleich Zwei mal eine andere Zahl ist, nämlich:

    $p^2=2q^2$.

    Das bedeutet, dass auch $p$ gerade sein muss, denn nur gerade Zahlen haben gerade Quadratzahlen.

    Deshalb können wir $p$ durch eine andere Zahl $r$ ausdrücken:

    $p=2r$.

    Setzen wir das in die Gleichung ein und formen um dann erhalten wir für $q^2$:

    $q^2=2 r^2$.

    (Um den Beweis voranzubringen, ergibt es Sinn, $p$ so umzuschreiben. Dieser Schritt ist nicht offensichtlich. Man muss ihn durch Ausprobieren herausfinden.)

    Aus demselben Grund wie oben muss $q$ gerade sein.

    Wir können also schreiben:

    $q=2s$.

    Damit haben wir einen Widerspruch erzeugt. (Und die Gegenannahme widerlegt.) Setzen wir die beiden Zahlen ein, dann erhalten wir:

    $\sqrt{2} = \frac{p}{q}=\frac{2r}{2s}$.

    Das ist kein vollständig gekürzter Bruch mehr.

    Daraus folgt, dass $\sqrt{2}$ keine rationale Zahl ist. Sie muss also irrational sein.

    q.e.d.

  • Bestimme die korrekten Aussagen.

    Tipps

    Die wichtige Eigenschaft beim Beweis der Irrationalität von $\sqrt{2}$ war, dass beide Zahlen gerade sind.

    Lösung

    Die folgenden Aussagen sind falsch:

    • Es gibt einen Widerspruchsbeweis für die Irrationalität von $\sqrt{3}$, in dem Folgendes benutzt wird: Stehen im Zähler und im Nenner eines Bruches zwei gerade Zahlen, dann kann man den Bruch kürzen.
    Im Beweis der Irrationalität von $\sqrt{3}$ würde wohl eher ein Bruch mit zwei ungeraden Zahlen auftauchen. Tatsächlich läuft der Beweis aber etwas anders.

    • Es gibt einen Widerspruchsbeweis für die Irrationalität von $\sqrt{4}$, in dem Folgendes benutzt wird: Stehen im Zähler und im Nenner zwei gerade Zahlen, dann kann man den Bruch kürzen.
    Da $\sqrt{4}$ nicht irrational ist, gibt es keinen korrekten Beweis dafür:

    $\sqrt{4}=2$.

    • Bei einem Widerspruchsbeweis kann man auch annehmen, dass das Gegenteil der zu beweisenden Aussage falsch ist. So kommt man auch auf einen Widerspruch.
    Man muss immer annehmen, dass die Aussage wahr ist, denn nur so lässt sich ein Widerspruch schlussfolgern.

    • Mit dem Widerspruchsbeweis kann man nur Aussagen über die Irrationalität von Zahlen treffen.
    Der Widerspruchsbeweis ist vielseitig anwendbar. Der Beweis der Irrationalität von Zahlen ist eine seiner Anwendungen.

    $~$

    Diese Aussagen sind wahr:

    Es gibt einen Widerspruchsbeweis für die Irrationalität von $\sqrt{10}$, in dem Folgendes benutzt wird: Stehen im Zähler und im Nenner eines Bruches zwei gerade Zahlen, dann kann man den Bruch kürzen.

    Analog zu den Beweisen zur Irrationalität von $\sqrt{2}$ und zur Irrationalität von $\sqrt{6}$ benutzt man auch bei $\sqrt{10}$ und bei allen anderen irrationalen Wurzeln von geraden Zahlen diesen Satz.

    • Im Unterschied zum Widerspruchsbeweis benutzt man beim direkten Beweis Aussagen, die als wahr bekannt sind. Man nutzt logische Schlüsse, um aus ihnen die zu beweisende Aussage direkt zu folgern.
    Das ist das Vorgehen bei einem direkten Beweis.

  • Bestimme, welche Zahlen irrational sind.

    Tipps

    Die Dezimalschreibweise einer irrationalen Zahl bricht niemals ab, ist aber auch nicht periodisch.

    Lösung

    • $\sqrt{2}$, $\pi$, $\sqrt{5}$ und $-\sqrt{7}$ sind irrationale Zahlen, da ihre Dezimalschreibweise niemals abbricht, aber auch nicht periodisch ist.
    • Für $\sqrt{9}$, $-5$, $\frac{5}{2}$, $8$, $5,656$, $\frac{6}{2}$, $3,\bar{3}$, $\frac{10}{3}$ ist dies nicht der Fall. Ihre Dezimalschreibweise hat ein Ende. Sie sind also rationale Zahlen. Für einige dieser Zahlen ist das nicht offensichtlich. Zum Beispiel:
    $\sqrt{9}=3$, also ist sie rational, obwohl es eine Wurzel ist

    $3,\bar{3}$ kann man auch als Bruch schreiben, nämlich $3,\bar{3}=\frac{10}{3}$, also ist auch diese Zahl rational.

  • Zeige, dass die Wurzel aus 6 irrational ist.

    Tipps

    Zuerst stellt man die Aussage auf und verneint diese logisch.

    Die Rechnung führt zu einem Widerspruch.

    Die Argumentation ist analog zum Widerspruchsbeweis der Wurzel aus zwei.

    Lösung

    Die Elemente müssen in dieser Reihenfolge stehen:

    • Er stellt zuerst die Aussage auf:
    $\sqrt{6} \in \mathbb{R} \backslash \mathbb{Q}$.

    • Und formuliert das logische Gegenteil:
    $\sqrt{6} \in \mathbb{Q}$.

    • Eine rationale Zahl lässt sich schreiben als:
    $\sqrt{6} = \frac{p}{q}$, wobei $\frac{p}{q}$ vollständig gekürzt sein muss.

    Er stellt die Gleichung um und erhält:

    $\sqrt{6} = \frac{p}{q} \Leftrightarrow$

    $6 = \frac{p^2}{q^2} \Leftrightarrow$

    $p^2=6q^2$

    • Er weiß jetzt, das $p^2$ gerade sein muss, denn es gilt:
    $p^2=6q^2 =2 \cdot 3 q^2$.

    Hier wird eine Zahl ($3q^2$) mit einer geraden Zahl ($2$) multipliziert. Das Ergebnis ist immer gerade.

    Damit ist auch $p$ gerade.

    • Deshalb kann er $p$ durch eine andere Zahl $r$ ausdrücken:
    $p=2r$.

    Damit folgt für $3q^2$:

    $3q^2= 2r^2$.

    $3q^2$ ist also eine gerade Zahl. $3$ ist aber ungerade. Dann muss $q^2$ gerade sein, denn wenn man zwei ungerade Zahlen multipliziert, ergibt das wieder eine ungerade Zahl.

    Also kann er schreiben:

    $q=2s$.

    • Das aber erzeugt einen Widerspruch! Wenn er die beiden Zahlen einsetzt, erhält er:
    $\sqrt{6} = \frac{p}{q}=\frac{2r}{2s}$.

    Das ist kein vollständig gekürzter Bruch mehr.

    • Daraus folgt, dass die Wurzel aus 6 keine rationale Zahl ist. Sie muss also irrational sein.
    q.e.d.