30 Tagekostenlos testen

Überzeugen Sie sich von der Qualität unserer Inhalte.

Lagebeziehungen zweier Geraden

Bewertung

Ø 3.6 / 113 Bewertungen

Die Autor*innen
Avatar
André Otto
Lagebeziehungen zweier Geraden
lernst du in der Primarschule 5. Klasse - 6. Klasse

Beschreibung Lagebeziehungen zweier Geraden

Die Lagebeziehung von zwei Geraden ist eine der wichtigsten Eigenschaften in der Geometrie. Um mehr darüber zu lernen, wie zwei Geraden zueinander stehen, wiederholen wir zum Einstieg noch einmal den Begriff der Geraden. Danach lernst du die grundlegenden Lagebeziehungen kennen: zwei Geraden können sich schneiden oder parallel zueinander sein; zudem gibt es noch besondere Fälle. Wann sind zwei Geraden parallel? Wann schneiden sie sich? Was ist ein Schnittwinkel und was bedeutet senkrecht? Und wie schreibe ich das alles mathematisch auf? Dieses Video erklärt dir dazu anhand von anschaulichen Beispielen alles nötige.

Transkript Lagebeziehungen zweier Geraden

Hallo liebe Schülerinnen und Schüler, herzlich willkommen zum Video Geometrie Teil 2. Im Video Geometrie Teil 1 haben wir über wichtige Begriffe der Geometrie gesprochen. Heute soll es etwas genauer über einen dieser wichtigen Begriffe gehen. Wir werden heute über die Lagebeziehung von 2 Geraden sprechen. Ihr könnt euch erinnern, dass eine Gerade, eine Geradelinie ist, hier mit g bezeichnet, die keinen Anfangs- und keinen Endpunkt hat. Ich habe euch gesagt, dass man eine Gerade durch ein dünnes Stäbchen, wie z. B. dieses grüne, dünne Stäbchen, symbolisieren kann. Nun kommt noch ein 2. dünnes Stäbchen, zur Unterscheidung ist diese rot, hier dazu. Wenn man den Abstand zwischen dem grünen und dem roten Stäbchen vermisst, so kommt man, an verschiedenen Stellen, jeweils auf den gleichen Wert. Bei uns ist das in jedem Fall 12 cm. Es könnte natürlich auch ein anderer Wert sein. Wenn der Abstand zwischen 2 Geraden immer gleich ist, so bezeichnet man diese beiden Geraden auch als parallele Geraden. Ihre Lage zueinander ist parallel. Man kann die Lagebeziehung parallel auch mathematisch bezeichnen. Dafür bezeichnen wir die grüne Gerade mit g und die rote Gerade mit h. Dann kann man schreiben g||h. Man schreibt zwischen g und h 2 senkrechte Striche. Eine 2. Möglichkeit der Lagebeziehung von 2 Geraden, g und h, liegt dann vor, wenn sie, ich sage es einfach mal, irgendwie in der Ebene liegen. So wie hier dargestellt. Dann sind sie natürlich nicht mehr parallel. Man sagt dann, die Geraden g und h schneiden sich. Und sie besitzen einen gemeinsamen Punkt A. Man kann diese Lagebeziehung, die Geraden schneiden sich, auch mathematisch darstellen. Dafür schreibt man zwischen g und h wieder 2 senkrechte, parallele Striche, diese werden diesmal durch einen Schrägstrich durchgestrichen. Das bedeutet g||/h. Eine 3. Möglichkeit der Lagebeziehung, zweier Geraden g und h, besteht dann, wenn sie aufeinander oder besser gesagt in einander, liegen. Das kann man eigentlich gar nicht darstellen. Ich habe es hier angedeutet, damit man es sich vorstellen kann. Man sagt dann, in einem solchen Fall, g und h sind gleich oder identisch. In mathematischer Schreibweise bedeutet das g=h, oder g≡h, in diesem Fall schreibt man zwischen g und h 3 parallele Striche. Kommen wir nun zum letzten Fall. Die Gerade g wird von einer anderen Geraden geschnitten. Die andere Gerade soll h heißen. Der gemeinsame Schnittpunkt A. Den Fall hatten wir schon, h und g schneiden sich, h||/g. Wir können nun 2 Winkel einzeichnen, den Winkel α und den Winkel β. Es soll nun gelten und das legen wir fest, α=β, das heißt, beide Winkel sind gleich groß. In einem solchen Fall sagt man h und g stehen senkrecht aufeinander. In mathematischer Schreibweise sieht das so aus: h|_g, man schreibt zwischen h und g ein T, was auf dem Kopf steht. Man bezeichnet α und β als Schnittwinkel der beiden Geraden g und h. Jetzt möchten wir einen Begriff definieren, wir wollen eine Definition, das ist eine Festlegung verwenden. Definition 1 abgekürzt D1. D1: Der Schnittwinkel zweier senkrechter Geraden beträgt 90°. Also, α=90° und da α und β gleich sein sollen, β=90°. So, und nun sind wir schon am Ende. Ich hoffe ihr hattet etwas Freude. Bis zum nächsten Mal, tschüss

43 Kommentare

43 Kommentare
  1. UwU ^_^

    Von Sarah, vor einem Tag
  2. Danke 😄👍 ^_^

    ●●●●●●●●●●● ^_^

    Von Sarah, vor einem Tag
  3. Sehr gutes Video, hat mir sehr geholfen. :)

    Von Konstanza, vor 4 Monaten
  4. Gutes Video :)

    Von Konstanza, vor 4 Monaten
  5. ich finde es toll

    Von Nicole Bloemmueller, vor 5 Monaten
Mehr Kommentare

Lagebeziehungen zweier Geraden Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Lagebeziehungen zweier Geraden kannst du es wiederholen und üben.
  • Ergänze die Erklärung zu parallelen Geraden.

    Tipps

    Schaue dir die Abbildung zweier paralleler Geraden $g$ und $h$ an.

    Unter dem Abstand versteht man hier die kürzeste Strecke zwischen zwei Geraden.

    Lösung

    Wenn der Abstand zwischen zwei Geraden immer gleich ist, so bezeichnet man diese Geraden auch als parallele Geraden.

    Ihre Lage zueinander ist parallel. Man schreibt $g\parallel h$.

    Ein Spezialfall der Parallelität ist die Identität: Wenn zwei Geraden identisch sind, ist der Abstand immer gleich $0$. Man schreibt $g=h$ oder $g\equiv h$.

  • Gib an, welche möglichen Lagebeziehungen es bei zwei Geraden geben kann.

    Tipps

    Parallele Geraden haben überall den gleichen Abstand zueinander.

    Identische Geraden sind ebenfalls parallele Geraden.

    Umgekehrt gilt dies nicht: Parallele Geraden sind nicht auch identische Geraden.

    Wenn Geraden nicht parallel sind, dann müssen sie sich schneiden.

    Lösung

    Es gibt verschiedene Lagebeziehungen zwischen zwei Geraden.

    Wir betrachten diese nun von oben nach unten.

    • Sie können parallel zueinander sein. Dann haben sie überall den gleichen Abstand. Dies schreibt man so: $g\parallel h$.
    • Sie können auch identisch sein. Dies ist ein Spezialfall der Parallelität. Dies schreibt man entweder $g=h$ oder $g\equiv h$.
    Wenn zwei Geraden nicht parallel sind, müssen sie sich schneiden. Dabei kann ein besonderer Fall auftreten, nämlich der, dass die Schnittwinkel rechte Winkel sind.

    • Wenn zwei Geraden sich schneiden, haben sie einen Schnittpunkt $A$ sowie zwei Schnittwinkel $\alpha$ und $\beta$. Von den Schnittwinkeln ist bis auf den folgenden Fall der eine ein spitzer und der andere ein stumpfer Winkel. Hier schreibt man $g\not\parallel h$.
    • Ein Sonderfall des Schnittes liegt vor, wenn die Schnittwinkel gleich groß sind: $\alpha=\beta=90^\circ$. Man sagt dann, dass die Geraden senkrecht zueinander sind, und schreibt $g\perp h$.
  • Ordne die Geraden ihrer Lage zu der Geraden $g$ zu.

    Tipps

    Die Geraden, welche $g$ senkrecht schneiden, gehören zu „senkrecht zu $g$“ und nicht zu „schneidet $g$“.

    Zu jeder der gegebenen Lagen findest du zwei Geraden.

    Schaue dir die Abbildung an:

    Steht eine Gerade $h$ senkrecht zu $g$, welche wiederum senkrecht zu $k$ steht, dann sind $h$ und $k$ parallel.

    Lösung

    Schauen wir uns zunächst die Geraden an, die senkrecht zu $g$ sind:

    • An den Winkeln $\alpha=\beta$ erkennst du, dass $h\perp g$ ist.
    • An den Winkeln $\alpha'=\beta'$ erkennst du, dass $l\perp g$ ist.
    Die beiden Geraden $h$ und $l$ schneiden $g$ somit im rechten Winkel.

    • Es ist $\alpha''=\beta''$. Das bedeutet, dass die Gerade $k$ senkrecht zu $h$ ist. Also ist $k\parallel g$.
    • Ebenso ist $j\perp l$ und damit $j\parallel g$.
    Die verbleibenden beiden Geraden $m$ und $n$ schneiden die Gerade $g$.

    • $m\not\parallel g$
    • $n\not\parallel g$
  • Entscheide, welche Lagebeziehungen vorliegen.

    Tipps

    Zwei Geraden $g$ und $h$ stehen senkrecht auf einer dritten Geraden $l$.

    Dann sind die beiden Geraden $g$ und $h$ parallel zueinander.

    Es sind jeweils zweimal zwei Geraden parallel zueinander.

    Wenn die Schnittwinkel identisch sind, sind die Geraden, welche sich schneiden, senkrecht zueinander.

    Lösung

    Beginnen wir mit der Geraden $k$.

    Die Schnittwinkel $\alpha'$ sowie $\beta'$ mit der Geraden $m$ stimmen überein. Somit sind die Geraden $k$ und $m$ senkrecht zueinander. Ebenso stimmen die Schnittwinkel $\alpha$ und $\beta$ mit der Geraden $l$ überein. Dann sind auch $k$ und $l$ senkrecht zueinander: $k\perp m$ sowie $k\perp l$.

    Insbesondere sind die beiden Geraden $m$ und $l$ parallel zueinander.

    Da $k$ zu keiner der übrigen Geraden parallel ist, schneidet sie alle vier übrigen Geraden.

    Alle anderen Geraden schneiden jeweils drei Geraden:

    • $m$ schneidet $k$, $g$ und $h$.
    • $g$ schneidet $m$, $l$ und $k$.
    • $h$ schneidet $m$, $l$ und $k$.
    • $l$ schneidet $k$, $g$ und $h$.
  • Beschreibe, was eine Gerade ist.

    Tipps

    Stelle dir einen Sonnenstrahl vor: Dieser hat einen Ausgangspunkt (oder Anfangspunkt), nämlich die Sonne, und keinen Endpunkt.

    So sind in der Mathematik Strahlen beschrieben.

    Eine Strecke hat sowohl einen Anfangs- als auch einen Endpunkt. Hier siehst du die Strecke $\overline{AB}$.

    Lösung

    Eine Gerade wird üblicherweise mit einem Kleinbuchstaben beschrieben.

    Hier siehst du die beiden Geraden $g$ und $h$.

    Das Besondere an Geraden ist, dass sie weder einen Anfangs- noch einen Endpunkt haben.

    Es gibt noch weitere geometrische Formen, die auf eine gewisse Art einer Gerade ähnlich sehen:

    • Eine Strecke hat sowohl einen Anfangs- als auch einen Endpunkt.
    • Ein Strahl hat zwar einen Anfangs-, jedoch keinen Endpunkt.
    Sowohl auf einer Geraden als auch auf einer Strecke oder einem Strahl liegen übrigens unendlich viele Punkte.

  • Prüfe die folgenden Aussagen.

    Tipps

    Überlege dir gegebenenfalls ein Gegenbeispiel.

    Zeichne die jeweilige Situation auf ein Blatt Papier und prüfe die Aussagen damit.

    Zwei Geraden können sich auch in einem rechten Winkel schneiden.

    Zwei Aussagen sind richtig.

    Lösung

    Wenn $g$ und $h$ sowie $g$ und $k$ sich schneiden, dann schneiden sich auch $h$ und $k$: Diese Aussage ist falsch, wie du an dem Bild sehen kannst.

    $g$ und $h$ sowie $g$ und $k$ schneiden sich. $h$ und $k$ schneiden sich allerdings nicht.

    In diesem Bild kannst du auch erkennen, dass die zweite Aussage wahr, die dritte jedoch falsch ist.

    Sind zwei Geraden parallel zueinander, so haben sie überall den gleichen Abstand: Sind also $g$ und $h$ parallel sowie $h$ und $k$ parallel, dann haben auch $g$ und $k$ überall den gleichen Abstand. Dieser ergibt sich je nach Lage als Summe oder Differenz der Abstände. $g$ und $k$ sind auch parallel. Die vierte Aussage ist wahr.

    Die fünfte Aussage ist wieder falsch. Das Gegenbeispiel zu der ersten Aussage kannst du auch hier verwenden.

30 Tage kostenlos testen
Mit Spass Noten verbessern
und vollen Zugriff erhalten auf

10'239

Lernvideos

42'538

Übungen

37'558

Arbeitsblätter

24h

Hilfe von Lehrer/
-innen

laufender Yeti

Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.

30 Tage kostenlos testen

Testphase jederzeit online beenden