Nullstellen durch Substitution bestimmen
- Was ist Substitution? – Definition und Bedeutung
- Substitution bei biquadratischen Gleichungen
- Schritt-für-Schritt-Anleitung zur Substitution

in nur 12 Minuten? Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
-
5 Minuten verstehen
Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.
92%der Schüler*innen hilft sofatutor beim selbstständigen Lernen. -
5 Minuten üben
Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.
93%der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert. -
2 Minuten Fragen stellen
Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.
94%der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Grundlagen zum Thema Nullstellen durch Substitution bestimmen
Was ist Substitution? – Definition und Bedeutung
Die Substitution ist ein Hilfsmittel, mit dem du Gleichungen vereinfachen und leichter lösen kannst. Der Begriff kommt vom lateinischen Wort „substituere“, das so viel bedeutet wie „ersetzen“ oder „austauschen“.
Substitution bedeutet in Mathe, dass du einen Ausdruck durch eine einfachere Variable ersetzt, um eine Gleichung leichter zu lösen.
Ein typischer Ablauf des Substitutionsverfahrens besteht aus drei Schritten:
- Substituieren: Komplizierte Terme (mit der ursprünglichen Variable) durch eine neue Variable ersetzen.
- Lösen: Die vereinfachte Gleichung lösen.
- Resubstitution (Rücksubstituieren): Die ursprüngliche Variable zurückerhalten.
Im Alltag kannst du dir das Substitutionsverfahren wie einen „Mathe-Cheat-Code“ vorstellen: Du tauschst schwierige Terme gegen etwas Einfacheres aus, rechnest alles aus und setzt es am Ende einfach wieder zurück.
Substitution bei biquadratischen Gleichungen
Besonders häufig nutzt du die Substitution, um Gleichungen zu lösen, die z. B. die Form $x^4 + 3x^2 - 4 = 0$ haben. Solche Gleichungen heißen biquadratisch, weil der höchste Exponent ($4$) doppelt so groß ist wie bei einer quadratischen Gleichung ($2$). Außerdem stehen die Exponenten im Verhältnis $2:1$. Im Folgenden schauen wir uns an, wie die Substitution bei einer biquadratischen Gleichung funktioniert.
Schritt-für-Schritt-Anleitung zur Substitution
Betrachte die Gleichung:
$$x^4 - 5x^2 + 4 = 0$$
1. Substitution durchführen:
Setze $z = x^2$. Damit vereinfacht sich die Gleichung zu:
$$z^2 - 5z + 4 = 0$$
Beachte: $z^2=(x^2)^2=x^{2\cdot2}=x^4$
2. Vereinfachte Gleichung lösen:
Du erhältst eine quadratische Gleichung, die du mit der pq-Formel lösen kannst:
$$z_{1,2} = \frac{5}{2} \pm \sqrt{\left(\frac{5}{2}\right)^2 - 4}$$
$$z_1 = 4 \quad;\quad z_2 = 1$$
3. Resubstitution durchführen:
Setze wieder zurück: $x^2 = z$. Daraus folgen zwei Gleichungen:
$$x^2 = 4 \quad;\quad x^2 = 1$$
Diese lösen wir nach $x$ auf und erhalten:
$$x_1 = 2;\quad x_2 = -2;\quad x_3 = 1;\quad x_4 = -1$$
Übungsaufgaben zur Substitution
Nullstellen berechnen mit Substitution
Wenn du die Nullstellen einer ganzrationalen Funktion bestimmen sollst,
Bei der Funktion
Der typische Fall, bei dem eine Substitution angewendet werden sollte, ist die Bestimmung von Nullstellen einer biquadratischen Funktion (
Ausblick – das lernst du nach Substitution
Nachdem du nun das Substitutionsverfahren sicher anwenden kannst, kannst du dir zudem anschauen, wie du Nullstellen von Funktionen höheren Grades mithilfe der Polynomdivision bestimmen kannst.
Ein weiterer Anwendungsfall für die Methode Substitution ist außerdem die lineare Substitution bei der Berechnung von Integralen.
Zusammenfassung zum Thema Substitution
- Die Substitution hat folgenden Grundgedanken: Ersetzen komplizierter Terme durch einfachere Variablen.
- Die Substitution zur Lösung von Gleichungen hat drei Schritte: substituieren, lösen, rücksubstituieren.
- Wichtig ist die Substitution bei biquadratischen Gleichungen und der Bestimmung von Nullstellen.
Häufig gestellte Fragen zur Substitution
Transkript Nullstellen durch Substitution bestimmen
Mit wem würdest du gerne mal die Plätze tauschen?
Mit einer berühmten Künstlerin?
Einem umjubelten Sport-Star?
Oder vielleicht einem Mathe-Lehrer?
Die ersten beiden wären ja sicher ganz nett, aber nur in der Haut eines Mathe-Lehrers wäre es ein Leichtes für dich, „Nullstellen durch Substitution zu bestimmen“ – und da wollen wir heute hin.
Das Wort „Substitution“ leitet sich ab von „substituiere“ – das kommt aus dem Lateinischen und bedeutet „ersetzen“.
Die Frage ist: Was soll ersetzt werden und warum?
Wie du vielleicht weißt, können die „Nullstellen“ einer Funktion bestimmt werden, indem der Funktionsterm gleich null gesetzt, und die Gleichung nach „x“ aufgelöst wird.
Bei „linearen“ Gleichungen klappt das ganz gut, und für „quadratische“ Gleichungen gibt es die „P-Q-Formel“, sowie die allseits beliebte „Mitternachtsformel“.
Bei Funktionen, die Polynome „höheren“ Grades enthalten, wird's allerdings schnell problematisch.
Die „Substitution“ ist nun ein Mittel, um bestimmte Polynome höheren Grades zu vereinfachen.
Einfach gesagt, werden dabei große Potenzen von „x“ durch kleinere ersetzt.
Das kann man aber natürlich nicht einfach so machen!
Die Umwandlung muss in sich stimmig sein und am Ende wieder rückgängig gemacht werden.
Das klappt nur dann, wenn alle im Funktionsterm auftretenden „Exponenten von x“ jeweils im Verhältnis „Zwei zu Eins“ zueinanderstehen, also das doppelte voneinander sind.
Das ist zum Beispiel hier der Fall, oder bei dieser Funktion, oder auch hier.
Funktionen wie diese, in denen nur „x-hoch Vier“ und „x-Quadrat“ auftaucht, nennt man „Bi-quadratisch“.
Das ist auch der häufigste Fall, der dir über den Weg laufen wird – hier kann man das Prinzip der Substitution gut verdeutlichen:
Man ersetzt „x-Quadrat“ ganz einfach durch eine neue Variable, zum Beispiel „z“, und erhält So einen „quadratischen“ Funktionsterm für „F von z“.
Diese Gleichung kann jetzt mit der Lösungsformel für quadratische Gleichungen gelöst werden.
In unserem Beispiel erhalten wir die Lösungen „z-Eins gleich Neun“ und „z-Zwei gleich Vier“.
Das sind jetzt aber nicht die Nullstellen von F von „x“ – denn wir haben ja F von „Z“ gleich Null gesetzt.
Um von unseren Lösungen auf die eigentlichen Nullstellen zu kommen, müssen wir die Substitution wieder rückgängig machen.
Das nennt man „Resubstitution“.
Da wir „x-Quadrat“ zu „z“ gemacht haben, muss im Umkehrschluss gelten, dass aus „Wurzel-z“ wieder „x“ wird.
Die Wurzeln unserer Lösungen „z-Eins“ und „z-Zwei“, müssen also zu den Nullstellen „x-Eins“ und „x-Zwei“ führen, also hier zu den Werten „Drei“ und „Zwei“.
Und tatsächlich! Durch Einsetzen in die „Funktionsgleichung F von x“ sehen wir, dass diese beiden x-Werte wirklich die gesuchten Nullstellen sind.
EINE Sache müssen wir aber noch bedenken:
Durch unsere Substitution von „x-Quadrat“ durch „z“ fällt die Möglichkeit unter den Tisch, dass „x“ auch negativ sein könnte.
Da das „Minus“ beim Quadrieren herausfällt, führen nämlich ein Wert „x-Eins“ und dessen Gegenzahl „Minus-x-Eins“ zum selben Wert „Z-Eins“.
Das heißt, bei unseren Nullstellen „x-Eins“ und „x-Zwei“ müssen wir berücksichtigen, dass auch deren Gegenzahlen Nullstellen von „F von x“ sind.
Denn diese führen quadriert zu denselben Werten „z-Eins“ und „z-Zwei“, mit denen wir die substituierte Gleichung gelöst haben.
Im Umkehrschluss heißt das, dass die positiven und negativen Werte der Wurzeln von „z-Eins“ und „z-Zwei“ Nullstellen von „F von x“ sein müssen.
Dass das tatsächlich auch so ist, sehen wir, c.
Es ist dabei kein Zufall, dass aus zwei Lösungen einer quadratischen Gleichung plötzlich vier Lösungen einer Bi-quadratischen Gleichung werden, denn je höher der „Grad“ des Polynoms, desto mehr Nullstellen sind möglich.
Ein Polynom N-ten Grades kann bis zu „N“ Nullstellen haben.
So, jetzt sieh dir doch mal diese Funktionsgleichung in Ruhe an und versuche, die Nullstellen zu bestimmen.
Gleich fassen wir das Ergebnis zusammen, das du mithilfe dieser Substitution berechnen kannst.
Bereit?
Eine „Substitution“ ist hilfreich, wenn eine Funktion als Polynom vorliegt, bei dem alle Exponenten von „x“ im Verhältnis „Zwei zu Eins“ stehen.
So kann eine quadratische Gleichung aufgestellt werden, um die Lösungen mit bekannten Mitteln wie „P-Q-“ und „Mitternachtsformel“ zu bestimmen.
Durch eine „Resubstitution“ werden aus den Lösungen dann die Nullstellen der ursprünglichen Funktion abgeleitet.
Hier im Beispiel ist dafür das Ziehen der vierten Wurzel notwendig, was wieder zu vier Lösungen führt.
Ein Perspektivenwechsel hilft übrigens nicht nur bei den Matheaufgaben, sondern kann generell das gegenseitige Verständnis in beide Richtungen fördern.
Nullstellen durch Substitution bestimmen Übung
-
Beschreibe die Substitution.
TippsEin Polynom $n$-ten Grades kann bis zu $n$ Nullstellen haben.
Bei der Polynomfunktion $ f(x)=x^4+2x^2+3 $ kannst du Substitution anwenden, um sie zu lösen.
LösungUm bei Polynomen höheren Grades die Nullstellen zu bestimmen, kann man die Substitution zu Hilfe nehmen. Substituieren bedeutet, dass man größere Potenzen von $x$ durch kleinere Potenzen ersetzt, zum Beispiel: $x^2 \to z$. Dann können die Nullstellen der substituierten Funktion mit der Mitternachtsformel berechnet werden.
Dafür gibt es einige Voraussetzungen:
- Die Umwandlung muss in sich stimmig sein und am Ende wieder rückgängig gemacht werden.
- Alle Exponenten müssen im Verhältnis $2:1$ zueinander sein.
Folgende Aussagen sind korrekt:
- Du kannst die Substitution anwenden, wenn eine Funktion als Polynom vorliegt, bei dem alle Exponenten von $x$ im Verhältnis $2:1$ stehen.
- Durch Resubstitution werden aus den Lösungen dann die Nullstellen der ursprünglichen Funktion abgeleitet.
- Die Nullstellen einer Polynomfunktion können direkt mit der Mitternachtsformel berechnet werden.
- Eine Polynomfunktion hat ausschließlich $2$ Nullstellen.
-
Gib den Funktionsterm nach der Substitution an.
TippsEs gilt: $ x^{2n} = (x^n)^2 $.
Zum Beispiel kannst du bei der Polynomfunktion $f(x)=5x^4+2x^2+3$ das $x^2$ mit $z$ substituieren und erhältst $f(z)=5z^2+2z+3$.
LösungBei der Substitution ersetzt man hohe Exponenten von $x$ mit kleinen Exponenten so, dass eine Funktion der Form $ax^2+bx+c=0$ entsteht. Diese Funktion kann dann mithilfe der Mitternachtsformel gelöst werden und die Nullstellen berechnet. Dabei wird im Allgemeinen $x^n = z$ und $x^{2n} = (x^n)^2 = z^2$ substituiert. Anschließend musst du resubstituieren, indem du $\sqrt[n]{z} = \pm x$ berechnest.
Die Funktionen wurden folgendermaßen substituiert:
- $2x^4+3x^2+7$ wird mit $x^2=z$ und $x^4=z^2$ zu: $~2z^2+3z+7$.
- $2x^3+3x^6+7$ wird mit $x^3=z$ und $x^6=z^2$ zu: $~2z+3z^2+7$.
- $2x^8+3+7x^4$ wird mit $x^4=z$ und $x^8=z^2$ zu: $~2z^2+3+7z$.
- $2+3x^5+7x^{10}$ wird mit $x^5=z$ und $x^{10}=z^2$ zu: $~2+3z+7z^2$.
-
Berechne die Nullstellen der Polynomfunktion.
TippsDie Mitternachtsformel lautet:
$z_{1/2}=\dfrac{-b \pm \sqrt{b^2-4ac}}{2a}$
Beachte, dass beide Vorzeichen beim Resubstituieren vorkommen. Beispiel: $\sqrt{25}=\pm5$
Du erhältst also für jeden Wert von $z$ zwei Lösungen der Gleichung für $x$.
LösungWir berechnen die Nullstellen über eine Substitution:
$f(x)=-2x^4+34x^2-32$Wir substituieren mit $x^2=z$.
Dabei wird $x^4 = (x^2)^2$ zu $z^2$.$f(x)=-2z^2+34z-32$
Die Nullstellen sind die Lösungen der Gleichung $-2z^2 + 34 z - 32 = 0$. Wir können diese zunächst vereinfachen, indem wir durch $-2$ teilen und erhalten: $z^2 - 17z + 16$
Mit der Mitternachtsformel berechnen wir die Lösungen:$z_{1/2}=\dfrac{-b \pm \sqrt{b^2-4ac}}{2a}$
Also: $z_{1/2}=\dfrac{17 \pm \sqrt{(-17)^2-4 \cdot 16}}{2} =\dfrac{17 \pm 15}{2}$
Daraus ergibt sich $z_1= \dfrac {2}{2} = 1$ und $z_2= \dfrac {32}{2} = 16$.
Resubstitution:
$\sqrt{z}=\pm~{x}$
$\Rightarrow \quad \sqrt{z_1} = \sqrt{16}=\pm 4$
$\Rightarrow \quad \sqrt{z_2} = \sqrt{1}=\pm 1$
Die Polynomfunktion hat $4$ Nullstellen. $ \rightarrow ~ N_1(4\vert0)$ und $N_2(-4\vert0)$ und $N_3(1\vert0)$ und $N_4(-1\vert0)$
-
Bestimme die Nullstellen der Polynomfunktion durch Substitution mit $z$.
TippsBeachte, dass man bei $x^3 = z$ bei der Resubstitution die $3$te-Wurzel ziehen muss. Dabei hat $\sqrt[3]{64}$ nur das Ergebnis $4$ und nicht $\pm4$, da bei einer ungeraden Potenz das Vorzeichen erhalten bleibt.
Wenn man zum Beispiel aus der Resubstitution $z_1\rightarrow ~ x_1=5$ und $x_2=-5$ erhält, dann ergeben sich daraus die Nullstellen $(5\vert0)$ und $(-5\vert0)$.
LösungUm die Nullstellen des Polynoms $f(x) = x^6-35x^3+216$ zu bestimmen, muss die Gleichung $f(x) = 0$ gelöst werden.
Hier: $x^6-35x^3+216 = 0$
Da die Gleichung die Potenzen $x^6$ und $x^3$ enthält, substituieren wir zunächst mit $x^3 = z$ und erhalten:
$h(x)=z^2-35z+216$
Mit der Mitternachtsformel ergeben sich folgende Werte:
$z_{1/2}=\dfrac{-b \pm \sqrt{b^2-4ac}}{2a}$
$\Rightarrow \quad z_{1/2}=\dfrac{35 \pm \sqrt{35^2-4 \cdot 1 \cdot 216}}{2 \cdot 1}= \dfrac{35 \pm 361}{2}$
Daraus ergeben sich $z_1=\dfrac{54}{2}=27$ und $z_2=\dfrac{16}{2}=8$.
Nun führen wir die Resubstitution durch:
Aus $z_1=27$ erhalten wir $x_1 = \sqrt[3]{27} = 3$ und aus $z_2=8$ erhalten wir $x_2 = \sqrt[3]{8} = 2$.
Beachte, dass bei der $3$ten-Wurzel kein $\pm$ vor der Lösung steht, wir also für jeden Wert von $z$ nur einen Wert von $x$ erhalten. Dies liegt daran, dass bei ungeraden Potenzen wie $x^3$ das Vorzeichen erhalten bleibt.
Die Nullstellen von $f(x)$ sind also:
$N_1(3\vert0)$ und $N_2(2\vert0)$
-
Benenne die Funktionen, deren Nullstellen durch Substitution bestimmt werden können.
TippsMan kann eine Polynomfunktion nur mit Substitution lösen, wenn ihre Exponenten im Verhältnis $2:1$ stehen.
Bei der Polynomfunktion $\dfrac{1}{2}x^4+\dfrac{1}{3}x^2+3$ können die Nullstellen durch Substitution bestimmt werden.
Bei der Polxnomfunktion $\dfrac{1}{2}x^7+\dfrac{1}{3}x^6+3$ können die Nullstellen nicht durch Substitution bestimmt werden.
LösungUm Nullstellen von Polynomfunktionen zu bestimmen, kann man die Substitution zu Hilfe nehmen. Man kann sie aber nur substituieren, wenn ihre Exponenten im Verhältnis $2:1$ stehen.
Bei diesen Polynomen kann man Nullstellen mit Substitution bestimmen:
- $h(x)=\dfrac{1}{16}x^8-\dfrac{17}{16}x^4+1$
$x^4=z~\rightarrow~f(z)=\dfrac{1}{16}z^2-\dfrac{17}{16}z+1$
- $h(x)=\dfrac{1}{16}x^2-\dfrac{17}{16}x^4+1$
$x^2=z~\rightarrow~f(z)=\dfrac{1}{16}z-\dfrac{17}{16}z^2+1$
Bei diesen Polynomen kann man keine Nullstellen mit Substitution bestimmen:
- $h(x)=\dfrac{1}{16}x^6-\dfrac{17}{16}x^4+1$
- $h(x)=\dfrac{1}{16}x^8-\dfrac{17}{16}x^3+1$
-
Ermittle die Nullstellen der Exponentialfunktion durch Substitution mit $z$.
TippsPotenzgleichungen können durch Logarithmen gelöst werden.
Beispiel:
$e^x=5 ~ \Leftrightarrow ~ x=\ln{5}$
Es gilt:
$e^{2x} = \left(e^x\right)^2$
LösungUm die Nullstellen der Exponentialfunktion $f(x)=e^{2x}-5e^x+6$ zu berechnen, muss die Gleichung $f(x) = 0$ gelöst werden.
Wir berechnen die Nullstellen über eine Substitution. Dazu substituieren wir mit $e^x=z$.
Wir können $e^{2x} = e^{2 \cdot x} = e^{x \cdot 2} = (e^x)^2$ umschreiben und dadurch kannst du $e^{2x}$ mit $z^2$ ersetzen.Daraus ergibt sich $f(z)=z^2-5z+6$.
Mit der Mitternachtsformel erhält man folgende Werte:
$z_{1/2}=\dfrac{-b \pm \sqrt{b^2-4ac}}{2a}$
$\Rightarrow \quad z_{1/2}=\dfrac{5 \pm \sqrt{(-5)^2-4 \cdot 1 \cdot 6}}{2 \cdot 1 } = \dfrac{5 \pm 1}{2} $
Das ergibt $z_1= \dfrac {6}{2} = 3$ und $z_2= \dfrac {4}{2} = 2$.
Resubstitution:
$z_1 = e^{x_1} = 3 ~ \rightarrow ~ x_1 = \ln({3})$
$z_2 = e^{x_2} = 2 ~ \rightarrow ~ x_2 = \ln({2})$Die Funktion hat $2$ Nullstellen. $ \rightarrow ~ N_1(\ln({3})\vert0)$ und $N_2(\ln({2})\vert0)$

Ganzrationale Funktionen – Definition und Beispiele

Einführung in die Kurvendiskussion

Verhalten ganzrationaler Funktionen im Unendlichen

Symmetrie von Funktionsgraphen

Achsensymmetrie und Punktsymmetrie nachweisen

Nullstellen durch Polynomdivision bestimmen

Nullstellen durch Substitution bestimmen

Nullstellen von Funktionen höheren Grades

Extrempunkte bestimmen – Beispiele

Kurvendiskussion für quadratische Funktionen

Kurvendiskussion – Übungen
9'500
sofaheld-Level
6'600
vorgefertigte
Vokabeln
7'810
Lernvideos
37'237
Übungen
32'606
Arbeitsblätter
24h
Hilfe von Lehrkräften

Inhalte für alle Fächer und Schulstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.
Testphase jederzeit online beenden
Beliebteste Themen in Mathematik
- Römische Zahlen
- Prozentrechnung
- Prozentrechnung - Übungen
- Primzahlen
- Geometrische Lagebezeichnungen
- Was ist eine Ecke?
- Rechteck
- Was ist eine Gleichung?
- Pq-Formel
- Satz des Pythagoras – Übungen
- Binomische Formeln
- Graphisches Ableiten – Übungen
- Trapez
- Flächeninhalt – Übungen
- Volumen Zylinder
- Potenzgesetze – Übungen
- Umfang Kreis
- Zehnerzahlen vergleichen und ordnen – Übungen
- Quadrat
- Zahlen sortieren – Übungen
- Division
- Binomische Formeln – Übungen
- Raute
- Brüche umwandeln Übungen
- Parallelogramm
- Ungleichungen – Übungen
- Polynomdivision
- Zahlen bis 1000 ordnen – Übungen
- Was Ist Eine Viertelstunde
- Terme mit Variablen aufstellen – Übungen
- Prisma
- Die Grundrechenarten – Übungen
- Mitternachtsformel
- Äquivalenzumformung
- Grundrechenarten Begriffe
- Größer Kleiner Zeichen
- Dreiecksarten
- Punkt-vor-Strich und Klammern-zuerst-Regel
- Aufbau von Dreiecken
- Quader
- Zahlen runden – Übungen
- Satz Des Pythagoras
- Ziffern und Stellenwerte – Übungen
- Dreieck Grundschule
- Koordinatensystem – Übungen
- Erste Binomische Formel
- Kreis
- Trigonometrie
- Trigonometrische Funktionen
- Standardabweichung