Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Multiplikation und Division von Potenzen

Alle Inhalte sind von Lehrkräften & Lernexperten erstellt
Du möchtest schneller & einfacher lernen?

Dann nutze doch Erklärvideos & übe mit Lernspielen für die Schule.

Kostenlos testen
Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Bewertung

Ø 3.7 / 80 Bewertungen
Die Autor*innen
Avatar
Team Digital
Multiplikation und Division von Potenzen
lernst du in der Sekundarstufe 3. Klasse - 4. Klasse

Grundlagen zum Thema Multiplikation und Division von Potenzen

Potenzen multiplizieren, dividieren und potenzieren – Mathematik

Charly spielt das neue Spiel Dance Potenz, der Hit bei allen Kids. Im Moment kommt sie aber nicht so richtig weiter. Im aktuellen Level muss sie Regeln für die Multiplikation und Division von Potenzen vervollständigen. Mit ihrem Wissen zu den Potenzgesetzen wird sie sich auf der Rangliste bestimmt ganz nach oben tanzen. Charly muss die Regeln, wie man Potenzen multipliziert, dividiert und potenziert, ergänzen, um zur Gamerlegende zu werden. Aber wie funktionieren Multiplikation, Division und Potenzierung von Potenzen? In diesem Text gibt es anhand von Beispielen eine Erklärung, wie man Potenzen multipliziert, dividiert und potenziert.


Potenzen multiplizieren – Regel

Die Regel für das Multiplizieren von Potenzen lautet:

$\bigl( a\cdot b\bigr) ^{m} = a^{m} \cdot b^{m}$

Die Regel besagt also: Die Potenz eines Produkts ist dasselbe wie das Produkt der Potenzen. Wenn man also zwei Zahlen multipliziert und das Produkt dann potenziert, erhält man dasselbe Ergebnis, als wenn man die Faktoren einzeln mit dem gleichen Exponent potenziert und dann die beiden Potenzen multipliziert.

Schauen wir uns dazu ein Beispiel an. Wir setzen folgende Zahlen ein:

$a=2 \qquad b=5 \qquad m=3$

Ist $2$ mal $5$ in Klammern hoch $3$ wirklich das Gleiche wie $2$ hoch $3$ mal $5$ hoch $3$? Wir überprüfen den Satz, indem wir jeweils die linke Seite als Produkt ausschreiben. Den Term $\bigl(2 \cdot 5\bigr)^{3}$ können wir auch schreiben als:

$\bigl(2 \cdot 5\bigr)^{3} = \bigl(2 \cdot 5 \bigr) \cdot \bigl( 2 \cdot 5 \bigr) \cdot \bigl( 2 \cdot 5 \bigr)$

Dem Kommutativgesetz entsprechend kann man die Reihenfolge der Faktoren ändern zu:

$\bigl(2 \cdot 5 \bigr)^{3} = 2 \cdot 2 \cdot 2 \cdot 5 \cdot 5 \cdot 5$

Das wiederum kann vereinfacht werden zu:

$\bigl(2 \cdot 5\bigr)^{3} = 2^{3} \cdot 5^{3}$

Somit trifft die Regel zu.


Potenzen potenzieren – Regel

Wie potenziert man eine Potenz? Die Regel besagt:

$\Bigl(a^{m}\Bigr)^{p} = a^{m \cdot p}$

Schauen wir uns das Potenzieren von Potenzen ebenfalls an einem Beispiel an. Dafür setzen wir die folgenden Zahlen ein:

$a=2 \qquad m=3 \qquad p=4$

Laut dem Gesetz gilt:

$\Bigl(2^{3}\Bigr)^{4} = 2^{12}$

Der Term $\Bigl(2^{3}\Bigr)^{4}$ bedeutet, dass man $2^{3}$ viermal mit sich selbst multipliziert.

$\Bigl(2^{3}\Bigr)^{4} = \Bigl(2^{3}\Bigr) \cdot \Bigl(2^{3}\Bigr) \cdot \Bigl(2^{3}\Bigr) \cdot \Bigl(2^{3}\Bigr)$

Da die Basis stets gleich ist, können die Exponenten addiert werden.

$\Bigl(2^{3}\Bigr)^{4} = 2^{3+3+3+3}$

Die Exponenten sind alle gleich, daher kann man es auch schreiben als:

$\Bigl(2^{3}\Bigr)^{4} = 2^{3 \cdot 4}$

Und somit erhalten wir:

$\Bigl(2^{3}\Bigr)^{4} = 2^{12}$


Brüche potenzieren – Regel

Für das große Finale muss Charly Brüche potenzieren. Die Regel besagt:

$\Bigl(\frac{a}{b}\Bigr)^{m} = \frac{a^{m}}{b^{m}}$

Auch für dieses Gesetz betrachten wir ein Beispiel. Dafür nutzen wir die Zahlen:

$a=2 \qquad b=5 \qquad m=3$

Die Frage ist nun, ob die folgende Gleichung gilt:

$\Bigl(\frac{2}{5}\Bigr)^{3} = \frac{2^{3}}{5^{3}}$

Dem Kommutativgesetz entsprechend kann man die erste Potenz auch schreiben als:

$\Bigl(\frac{2}{5}\Bigr)^{3} = \frac{2}{5} \cdot \frac{2}{5} \cdot \frac{2}{5}$

Das können wir nun zu einem Bruch zusammenfassen.

$\Bigl(\frac{2}{5}\Bigr)^{3} = \frac{2 \cdot 2 \cdot 2}{5 \cdot 5 \cdot 5}$

Vereinfachen wir diesen Bruch, so erhalten wir:

$\Bigl(\frac{2}{5}\Bigr)^{3} = \frac{2^{3}}{5^{3}}$

Damit ist auch gezeigt, dass auch diese Regel zutrifft.

Transkript Multiplikation und Division von Potenzen

Charlie spielt das neue Spiel "Dance Potenz". Der Hit bei allen Kids. Im Moment kommt sie aber nicht so richtig weiter. Im aktuellen Level muss sie Regeln für die Multiplikation und Division von Potenzen vervollständigen. Mit ihrem Wissen zu den Potenzgesetzen wird sie sich auf der Rangliste bestimmt ganz nach oben tanzen. Charlie muss die Regeln, wie man Potenzen multipliziert, dividiert und potenziert, ergänzen, um zur Gamerlegende zu werden. Sie beginnt mit dem Multiplizieren von Potenzen. Die Variablen kommen immer schneller. Klammer auf! a! Mal! b! Klammer zu! Hoch m! Ist gleich! a! Hoch m! Mal! b! Hoch m! Alles Nächstes kommt das Potenzieren von Potenzen. Los geht's! Klammer auf! a! Hoch m! Klammer zu! Hoch p! Ist gleich! a! Hoch! Klammer auf! m! Mal! p! Klammer zu! Letzte Runde! Das Dividieren von Potenzen! Hält Charlie durch?! Klammer auf! a! Geteilt durch! b! Klammer zu! Hoch m! Ist gleich! a! Hoch m! Geteilt durch! b! Hoch m! Schauen wir uns mal ein paar Zahlenbeispiele für die Potenzgesetze, die Charlie gerade tanzen musste, an. In der ersten Regel ging es um das Multiplizieren von Potenzen: (a mal b)m = am mal bm. Wir setzen für a 2 ein, für b 5 und für m 3. Ist (2 mal 5)3 wirklich gleich 23 mal 53? (2 mal 5)3 können wir auch schreiben als (2 mal 5) mal (2 mal 5) mal (2 mal 5). Dem Kommutativgesetz entsprechend kann man die Reihenfolge der Faktoren zu 2 mal 2 mal 2 mal 5 mal 5 mal 5 ändern. Das kann man vereinfachen zu 23 mal 53. Das bedeutet, dass (2 mal 5)3 gleich 23 mal 53 ist. Aber wie potenziert man eine Potenz? Die Regel besagt: (am)p = a hoch "m mal p". Setzen wir für a wieder 2 für m 3 und für p 4 ein. Ist (23)4 wirklich gleich 212? (23)4 bedeutet, dass man 23 viermal mit sich selbst multipliziert. Die Basis ist stets gleich, also können wir die Exponenten addieren. Die Exponenten sind alle gleich. Darum können wir sie auch als 3 mal 4 schreiben. Und so erhalten wir die Potenz 212. Für ihr großes Finale dividiert Charlie Potenzen. Die Regel besagt: (a/b)m = am / bm. Wie sieht das aus, wenn wir Zahlen einsetzen? Wir nehmen wieder 2 für a, b ist dieses Mal 5 und m ist 3. Die Frage lautet: Ist (2/5)3 wirklich gleich 2 hoch 3 geteilt durch 5 hoch 3? Dem Kommutativgesetz entsprechend kann man die Potenz auch als (2/5)(2/5)(2/5) schreiben. Den Zähler können wir auch als 2 mal 2 mal 2 schreiben und den Nenner als 5 mal 5 mal 5. Vereinfachen wir das, erhalten wir (2)3/ (5)3. Schauen wir mal, wie Charlie sich schlägt. Geschafft! Erster Platz und das Recht, kräftig anzugeben. Aber gerade als Charlie sich als Champion der Familie in die Bestenliste eintragen will.

13 Kommentare
13 Kommentare
  1. ich finde das video eine super hilfe

    Von Finn Schulte, vor 2 Monaten
  2. Mega cool und super erklärt

    Von Hanna, vor 6 Monaten
  3. Ja ich hab schon Angst kappa 😅

    Von Master-X-Fire/Rocket League, vor mehr als 2 Jahren
  4. Cooles Video...aber die arme charly :(

    Von Romy, vor fast 3 Jahren
  5. die arme charly😪😥

    Von Patricklausch, vor etwa 3 Jahren
Mehr Kommentare

Multiplikation und Division von Potenzen Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Multiplikation und Division von Potenzen kannst du es wiederholen und üben.
  • Berechne die Potenzen.

    Tipps

    $5^7$ ist dasselbe wie $5$ siebenmal mit sich selbst multipliziert.

    Das Potenzgesetz besagt: $a^n \cdot a^m = a^{n+m}$.

    Bei einer Potenz $a^n$ ist $a$ die Basis und $n$ der Exponent.

    Lösung

    Zuerst betrachten wir das Potenzieren von Potenzen. Dafür gilt die Formel:

    $(a^m)^p = a^{m \cdot p}$

    Du kannst diese Formel besser verstehen, indem du konkrete Zahlen einsetzt. Wenn Du $a=2$, $m=3$ und $p=4$ einsetzt, lautet die linke Seite der Potenzgleichung:

    $(a^m)^p = (2^3)^4$

    Der Term rechts ist die vierte Potenz von $2^3$, also ist $(2^3)$ viermal mit sich selbst multipliziert. Du kannst das ausschreiben und erhältst:

    $(2^3)^4 = (2^3) \cdot (2^3) \cdot (2^3) \cdot (2^3)$

    Das Potenzgesetz besagt: Bei Potenzen mit gleicher Basis kannst du die Exponenten addieren. Das ergibt dann:

    $(2^3) \cdot (2^3) \cdot (2^3) \cdot (2^3) = 2^{3+3+3+3} =2^{3 \cdot 4}$

    Als Nächstes betrachten wir die Division von Potenzen. Dafür gilt die Formel:

    $\big(\frac{a}{b}\big)^m = \frac{a^m}{b^m}$

    Setzen wir $a = 2$, $b=5$ und $m=3$ in die Formel ein, so erhalten wir:

    $\big(\frac{a}{b}\big)^m= \Big(\frac{2}{5}\Big)^3$

    Die rechte Seite ist die dritte Potenz von $\frac{2}{3}$, also $\frac{2}{3}$ dreimal mit sich selbst multipliziert:

    $\Big(\frac{2}{5}\Big)^3 = \frac{2}{5} \cdot \frac{2}{5} \cdot \frac{2}{5}$

    Das Produkt der Brüche kannst du ausmultiplizieren und zusammenfassen zu:

    $\frac{2}{5} \cdot \frac{2}{5} \cdot \frac{2}{5} = \frac{2\cdot 2 \cdot 2}{5 \cdot 5 \cdot 5} = \frac{2^3}{5^3}$

  • Benenne die Regeln zum Rechnen mit Potenzen.

    Tipps

    Das Potenzgesetz besagt: Das Produkt von Potenzen mit der gleichen Basis ist die Potenz mit der Summe der Exponenten.

    Es gilt: $(2^3)^4 = 2^{(3 \cdot 4)}$.

    Es gilt: $\left(\frac{3}{4}\right)^2 = \frac{3}{4} \cdot \frac{3}{4}$.

    Lösung

    Für das Rechnen mit Potenzen gelten verschiedene Regeln. Das Potenzgesetz besagt, dass das Produkt von Potenzen mit derselben Basis die Potenz mit der Summe der Exponenten ist:

    $a^n \cdot a^m = a^{n+m}$

    Das Produkt von Potenzen desselben Exponenten und verschiedener Basen ist die Potenz mit dem Produkt der Basen:

    $a^m \cdot b^m = (a \cdot b)^m$

    Die Potenz einer Potenz ist die Potenz mit dem Produkt der Exponenten:

    $(a^m)^p = a^{m \cdot p}$.

    Der Quotient von Potenzen mit demselben Exponenten ist die Potenz des Quotienten:

    $\frac{a^m}{b^m} = \left(\frac{a}{b}\right)^m$.

    Jetzt zu den Aussagen:

    Folgende Aussagen sind richtig:

    • „Für die Multiplikation von Potenzen gilt die Formel: $(a \cdot b)^m = a^m \cdot b^m$.“
    • „Für die Division von Potenzen gilt die Formel $\left(\frac{a}{b}\right)^m = \frac{a^m}{b^m}$.“
    • „Potenzen zu verschiedenen Basen mit demselben Exponenten kann man multiplizieren, indem man die Basen multipliziert und den Exponenten übernimmt.“
    Folgende Aussagen sind falsch:

    • „Das Potenzieren von Potenzen folgt dem Potenzgesetz $(a^m)^p = a^{m+p}$.“ Stattdessen gilt: $(a^m)^p = a^{m \cdot p}$.
    • „Die Regel für die Multiplikation von Brüchen führt auf die Formel $\left(\frac{a}{b}\right)^m = \frac{a^m}{m^b}$.“ Stattdessen gilt: $\left(\frac{a}{b}\right)^m = \frac{a^m}{b^m}$.
    • „Nach dem Potenzgesetz gilt $(2^3) \cdot (2^3) \cdot (2^3) \cdot (2^3) = 2^{3+4}$.“ Stattdessen ist $(2^3) \cdot (2^3) \cdot (2^3) \cdot (2^3) = 2^{3+3+3+3} = 2^{3 \cdot 4}$.
    • „Potenzen derselben Basis multipliziert man, indem man die Exponenten potenziert.“ Die Exponenten werden vielmehr addiert; dies ist die Aussage des Potenzgesetzes.
  • Bestimme die Potenzen.

    Tipps

    Potenziere eine Potenz, indem du die Potenz genügend oft mit sich selbst multiplizierst.

    Benutze das Kommutativgesetz der Multiplikation, um das Produkt von Potenzen verschiedener Basen umzuformen.

    Es gilt: $(a \cdot b)^m = a^m \cdot b^m$.

    Lösung

    Für die Aufgabe verwendest Du die Regeln:

    $a^m \cdot b^m = (a \cdot b)^m$

    und:

    $(a^m)^p = a^{m \cdot p}$

    mit verschiedenen Zahlen. Du kommst damit auf folgende Gleichungen:

    • $4^3 \cdot 3^3 = (4\cdot 3)^3 = 12^3$
    • $(3^4)^3 = 3^{4\cdot 3} = 3^{12}$
    • $3^{8} \cdot 3^3 = 3^{8+3} = 3^{11}$
    • $(4^2)^6 = 4^{2\cdot 6} = 4^{12}$
    • $6^4 \cdot 2^4 = (6\cdot 2)^4 = 12^4$
  • Prüfe die Potenzgleichungen.

    Tipps

    Rechne die Potenzen aus, um die Gleichungen zu überprüfen.

    Die erste binomische Formel lautet $(a+b)^2 = a^2 + 2ab + b^2$.

    Es gilt: $(2 \cdot 3)^3 = 6 \cdot 6 \cdot 6 = 216$.

    Lösung

    Für das Rechnen mit Potenzen benutzt du die Formeln für das Produkt:

    $(a \cdot b)^m = a^m \cdot b^m$

    für die Potenz:

    $(a^m)^p = a^{m \cdot p}$

    und für den Quotienten:

    $\left(\frac{a}{b}\right)^m = \frac{a^m}{b^m}$.

    Mit diesen Regeln findest Du folgende richtige Gleichungen:

    • $a^m \cdot b^m = (a \cdot b)^m$
    • $(3 \cdot 4)^2 = 144$
    • $(3^2)^3 = 3^4 \cdot 3^2$
    • $(2+2)^3 = (2^2)^3$
    Die nachfolgenden Gleichungen dagegen sind falsch:

    • $(a+b)^m = a^m + b^m$; denn z. B. für $m=2$ gilt die erste binomische Formel $(a+b)^2 = a^2 + 2ab + b^2$.
    • $\left(\frac{2}{3}\right)^3 = \frac{2^2}{3^3}$; richtig wäre $\left(\frac{2}{3}\right)^3 = \frac{2^3}{3^3}$.
    • $(a^m)^n = a^{m + n}$; richtig wäre $(a^m)^n = a^{m \cdot n}$ bzw $a^m \cdot a^n = a^{m+n}$.
    • $(2\cdot 3)^4 = (2^3)^4$; richtig wäre $(2 \cdot 3)^4 = 2^4 \cdot 3^4$.
  • Berechne die Potenzen.

    Tipps

    Die vierte Potenz einer Zahl erhältst Du, indem Du die Zahl viermal mit sich selbst multiplizierst.

    Mit dem Kommutativgesetz kannst Du bei Multiplikationen die Reihenfolge der Terme vertauschen.

    Es gilt: $(3 \cdot 4)^5 = 3^5 \cdot 4^5$.

    Lösung

    Die Regel für die Multiplikation von Potenzen mit verschiedenen Basen und denselben Exponenten lautet:

    $(a \cdot b)^m = a^m \cdot b^m$.

    Du kannst dich davon überzeugen, dass die Regel stimmt, indem du konkrete Zahlen einsetzt: Für die Basen $a=2$ und $b=5$ und den Exponenten $m=3$ ist:

    $(a \cdot b)^m = (2 \cdot 5)^3$.

    Rechts steht die dritte Potenz von $2 \cdot 5$, das ist ausgeschrieben dasselbe wie:

    $(2 \cdot 5) \cdot (2 \cdot 5) \cdot (2 \cdot 5)$.

    Mit dem Assoziativ- und Kommutativgesetz kannst du die Klammern weglassen und die Reihenfolge der Faktoren ändern. Wenn du jeweils alle Faktoren $2$ und alle Faktoren $5$ zusammenfasst, so erhältst du:

    $2 \cdot 2 \cdot 2 \cdot 5 \cdot 5 \cdot 5$.

    Das kannst du wieder zu Potenzen zusammenfassen und kommst schließlich auf:

    $2^3 \cdot 5^3$.

  • Erschließe die Umformungen.

    Tipps

    Das Potenzgesetz $a^m \cdot a^n = a^{m+n}$ gilt auch für negative $n$.

    Lösung

    In dieser Aufgabe kannst du lernen, die verschiedenen Rechenregeln für Potenzen zu kombinieren. Um die Aufgabe zu lösen, kannst du zuerst alle Zentralelemente auf die jeweils einfachste Form bringen, nämlich auf eine einzige Potenz. Die Umformungen der Zentralelemente sind die Folgenden:

    • $(3 \cdot 4)^5 = 12^5$
    • $(6 \cdot 2)^4 = 12^4$
    • $(3+4)^7 = 7^7$
    • $\left( \frac{4}{3} \cdot \frac{9}{2} \right)^6 = \left(\frac{2 \cdot 2 \cdot 3 \cdot 3}{3 \cdot 2}\right)^6 = 6^6$
    Im nächsten Schritt kannst du alle Elemente der Blätter auf jeweils eine Potenz bringen und findest durch diese Umformung die richtige Zuordnung heraus. Wir rechnen exemplarisch zwei Umformungen vor:

    • $(3+4)^5 \cdot 49 = 7^5 \cdot 7^2 = 7^7$
    • $6^{12-7} \cdot 6 = 6^5 \cdot 6 = 6^6$
    Auf diese Weise kannst du den Term jedes Blattes in eine Potenz umformen. Zusammengefasst erhältst du die folgenden Gleichungen, aus denen du die richtige Zuordnung ablesen kannst:

    • $(3 \cdot 4)^{5} = 3^5 \cdot 4^5 = 6^5 \cdot 2^5 = 12^3 \cdot 12^2 = (6 \cdot 2)^{2 + 3}$
    • $(6 \cdot 2)^4 = ((3 \cdot 4)^2)^2 = (3 \cdot 4)^3 \cdot 12 = 6^4 \cdot 2^4 = (6 \cdot 2)^2 \cdot (3 \cdot 4)^2$
    • $(3+4)^7 = 7^3 \cdot 7^4 = 7^{3+4} = (3+4)^5 \cdot 49 = (3 \cdot 4 -5)^7$
    • $\left(\frac{4}{3} \cdot\frac{9}{2}\right)^6 = (6^3)^2 = (3 \cdot 2)^{2\cdot 3} = (2 \cdot 3)^3 \cdot 6^3 = 6^{12-7} \cdot 6$
    Dies sind aber noch längst nicht alle möglichen Umformungen. Du findest bestimmt noch mehr, oder?